UNIVERSIDAD DE COLIMA

FACULTAD DE TELEMATICA

INTRODUCCION A LA PROGRAMACION

CARLOS ALBERTO FLORES CORTES

Antologia digital con Ejercicios

Esta obra esta bajo una Licencia Creative Commons
Atribucién-NoComercial-Compartirlgual 4.0 Internacional.

1

CONTENIDO

CONTENIDO
Presentaciéon
® Ejercicio 01 - Hola, mundo
@ Objetivo de aprendizaje
[] Instrucciones
= Entregables
M Requerimientos funcionales
(1)sayHelloWithName
(2)add
%’ Ejecucion de programas
B Ejecucion de pruebas unitarias
Comandos de Git y GitHub
= Recursos
® Ejercicio 02: Sintaxis basica de Typescript
@ Objetivo de aprendizaje
[] Instrucciones
= Entregables
Requerimientos funcionales
(1Jsum
(2 subtract
3multiply
divide
remainder
%’ Ejecucion de programas
Ejecucién de pruebas unitarias
Comandos de Git y GitHub
= Recursos
@ Ejercicio 03: Primeras lineas con Typescript
@ Objetivo de aprendizaje
[] Instrucciones
= Entregables
Requerimientos funcionales
(1) getDollars
2)getAreaCircle
3 getFahrenheit
(4)getAreaTrapezoid
%’ Ejecucién de programas
B Ejecucion de pruebas unitarias
Comandos de Git y GitHub

© O 00 00 0o N~N~NODdD

N U U O U U O U G G QU A U (U G U G QI QO G QT G G G
0 00 00 NN NOOO OO O P WWWWDMNDNDDNDNDDNN-L 20 O0O©

= Recursos
® Ejercicio 04: Introduccion a funciones
@ Objetivos de aprendizaje
[] Instrucciones
= Entregables
M Requerimientos funcionales
getAverage
getSquarePerimeter
3 getMilesToKilometers
(4)getDoubleNumber
getTriangleArea
(6)getSphereVolume
%’ Ejecucion de programas
Ejecucién de pruebas unitarias
Comandos de Git y GitHub
= Recursos
@ Ejercicio 05: Programacién de funciones
@ Objetivos de aprendizaje
[] Instrucciones
= Entregables
M Requerimientos funcionales
(1) getHypotenuse
2)geSeconds
I getMiles
(4 getLitres
getCylinderSurfaceArea
%’ Ejecucién de programas
B Ejecucion de pruebas unitarias
Comandos de Git y GitHub
= Recursos
® Ejercicio 06: Introduccion a Sentencias condicionales
@ Objetivos de aprendizaje
[] Instrucciones
= Entregables
M Requerimientos funcionales
isAdult
(2toTitle
3)sayHello*
(4)totalCost
getDiscount*
6)getCinemaCost
7)grade
(8/hasAccess
9)isStudent

19
20
20
20
21
21
21
21
21
21
22
22
22
22
22
23
24
24
24
25
25
25
25
25
25
26
26
26
26
27
27
28
28
28
28
29
29
29
29
29
30
30
30
30

%’ Ejecucién de programas
Ejecucidn de pruebas unitarias
Comandos de Git y GitHub
= Recursos
& Ejercicio 07 Sentencias condicionales
@ Objetivos de aprendizaje
[] Instrucciones
= Entregables
M Requerimientos funcionales
1)isPair
startsWithVowel
getLongestWord
getSeason
5 calculateShippingCost
convertGradeTolLetter
classifyNumber
(g classifyTriangle
9JclassifyAngle
10 calculateDiscount
%’ Ejecucién de programas
Ejecucidn de pruebas unitarias
Comandos de Git y GitHub
= Recursos
& Ejercicio 08: Sentencias condicionales
@ Objetivos de aprendizaje
[] Instrucciones
= Entregables
M Requerimientos funcionales
01 getCost
02 getSmallest
03 isEligibleForDiscount
04 isLeapYear
05 isValidPassword
06 getDiscountAmount
= Recursos
@ Ejercicio 09: Introduccion a sentencias repetitivas
@ Objetivos de aprendizaje
[] Instrucciones
= Entregables
M Requerimientos funcionales
01 printNumbers
printOddNumbers
02 invert
03 countVowels

30
31
31
32
32
32
33
33
33
33
34
34
34
34
34
35
35
35
36
36
36
37
37
38
38
38
39
39
39
39
39
40
40
40
40
40
41
41
41
41
42
42
42
42

04 countToTen
05 getSumFrom100
06 countLetter
07 printToFive
08 printFromAToB
09 getSum
10 printMultiply
11 fibonacci
%’ Ejecucion de programas
B Ejecucion de pruebas unitarias
Comandos de Git y GitHub
= Recursos
® Ejercicio 10: Sentencias repetitivas
@ Objetivos de aprendizaje
['] Instrucciones
= Entregables
M Requerimientos funcionales
(1)getSum
2 getSequence
3 getEvenSum
(4)count5and3
(5 calculatePower
(6)countVowels
(7)countCharacters
8/ sumDigits
reverseString
_[i] factorial
%’ Ejecucién de programas
B Ejecucién de pruebas unitarias
Comandos de Git y GitHub
= Recursos

42
42
43
43
43
43
43
44
44
44
45
45
46
46
46
46
47
47
47
47
47
48
48
48
48
48
48
49
49
49
50

Presentacion

La presente antologia de ejercicios ha sido disefiada como material de apoyo para la
asignatura Introduccion a la Programacion, dirigida a estudiantes y personas que se
inician en el aprendizaje del pensamiento computacional y el desarrollo de software.

El documento reune una serie de ejercicios organizados de manera progresiva, que abarcan
desde los conceptos mas basicos de la programacion, como la sintaxis elemental y el uso
de operadores, hasta temas fundamentales como funciones, estructuras condicionales y
ciclos. Cada ejercicio esta compuesto por varios problemas que describen una funcién o
algoritmo a resolver, con el objetivo de fortalecer la comprensién légica y la capacidad de
analisis del estudiante.

Los ejercicios han sido cuidadosamente disefiados para acompafar el proceso de
aprendizaje de forma gradual: comienzan con algoritmos sencillos y aumentan
paulatinamente en complejidad, llegando a plantear retos moderados que, sin ser dificiles,
invitan al estudiante a reflexionar, practicar y consolidar los conocimientos adquiridos. De
esta manera, la antologia funciona como una guia practica que permite poner en accion el
avance teorico visto en clase.

Si bien la sintaxis y las descripciones de los problemas fueron pensadas originalmente para
el lenguaje de programacion TypeScript, los ejercicios no dependen de caracteristicas
exclusivas de dicho lenguaje. Por ello, pueden adaptarse y utilizarse sin dificultad para
practicar con cualquier otro lenguaje de programacion, lo que los convierte en un recurso
flexible y reutilizable.

Adicionalmente, se recomienda el uso de comandos basicos de Git para la gestion y
actualizacién de los ejercicios, tanto en repositorios locales como en plataformas remotas
como GitHub. Esta practica busca fomentar desde etapas tempranas el uso de
herramientas fundamentales en el desarrollo de software profesional.

Finalmente, esta antologia puede ser también un recurso valioso para instructores y
docentes, ya que funciona como un banco de ejercicios que puede integrarse facilmente a
cursos, talleres o sesiones practicas, facilitando la ensefianza y evaluacién de los conceptos
basicos de programacion.

& Ejercicio 01 - Hola, mundo

Los temas que se estudian al realizar este reto son:

1.

Sintaxis basica de TypeScript: Aprenderas a utilizar la sintaxis de TypeScript
para declarar variables y funciones, asi como para implementar la l6gica
necesaria para obtener el resultado esperado.

. Tipos de datos en TypeScript: Aprenderas a utilizar los tipos de datos basicos

de TypeScript, incluyendo string, number Y boolean, asi como a declarar
variables con tipos de datos personalizados.

Interpolacion de cadenas de texto: Aprenderas a utilizar la interpolacion de
cadenas de texto para crear mensajes que incluyan valores de variables.

. Funciones y valores de retorno: Los estudiantes aprenderan a crear

funciones que reciban parametros y regresen valores, asi como a utilizar los
valores de retorno en otras funciones.

Pruebas y demostracion del funcionamiento: Aprenderas a utilizar la consola
para ejecutar programas y mostrar resultados.

Trabajo con repositorios de control de versiones: Aprenderas a utilizar un
repositorio de control de versiones para almacenar y entregar el cdédigo
fuente de sus programas.

Estos temas abarcan los aspectos fundamentales de TypeScript, incluyendo la
sintaxis, los tipos de datos, las funciones y las pruebas de programa. Al realizar este
ejercicio, los estudiantes tendran la oportunidad de consolidar su comprension de
estos conceptos y desarrollar habilidades practicas en la implementacion de codigo
en TypeScript.

@ Objetivo de aprendizaje

. Comprender la estructura basica de un programa escrito en TypeScript.

Familiarizarse con la sintaxis de TypeScript, incluyendo la declaracion de
variables, tipos de datos y funciones.

Practicar la creacion de funciones con parametros y valores de retorno.
Aprender a utilizar la consola para ejecutar programas y mostrar resultados.
Demostrar la capacidad para trabajar con cédigo fuente y utilizar un
repositorio para almacenar y entregar el cédigo.

Adquirir habilidades de resolucion de problemas y l6gica al desarrollar
soluciones para los requerimientos funcionales.

[] Instrucciones

1. Utilizando typescript codifica las funciones que se indican en la seccién
requerimientos funcionales de este documento.

2. Las funciones deben ser codificadas en un archivo llamado app.ts.

3. Las funciones deben tener el nombre que se indica y el numero y tipo de
parametros que se especifican en la seccion requerimientos funcionales.

4. En el archivo demo.ts se deben incluir ejemplos de cédigo que muestren el
correcto funcionamiento de las funciones.

5. Las funciones deben ser probadas y ejecutadas utilizando la consola.

6. El cédigo fuente final debe ser almacenado en este repositorio de GitHub.

= Entregables

e Cadigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

M Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones especificas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parametros, asi como el tipo de dato que
retorna cada funcion.

(1)sayHelloWithName

Escribe una funcion llamada sayHellowithName que reciba como parametro una
cadena de texto (string) con el nombre de una persona y regrese otra cadena de
texto (string) con el siguiente formato: Hola, <nombre>!, donde <nombre> €s el nombre
de la persona que se recibié como parametro.

None

sayHelloWithName(name: string): string

2add

Escribir una funcién llamada add que reciba dos parametros de tipo numérico
(number) y regrese como resultado la suma de los dos numeros.

None

add(a: number, b: number): number

%’ Ejecucién de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo
Por ejemplo:

None

npx ts-node demo

Ejecucion de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion
Por ejemplo:

None

npx jest add

® Comandos de Git y GitHub

Actualizacon del repositorio local

Cada vez que se terminé e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

None

git add archivo.ext

Un git add por cada archivo que se actualizd

Una vez que se agregaron los archivo para la nueva version, confirmar la nueva
version utilizando:

None

git commit -m "mensaje”

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualizacién del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript

TypeScript Deep Dive
TypeScript in 5 minutes

MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

& Ejercicio 02: Sintaxis basica de Typescript

Los temas que se estudian al realizar este reto son:

1. Operadores aritméticos y de asignacion: Aprenderas a utilizar los operadores
aritméticos, como la suma, resta, multiplicacion y division, para realizar
operaciones matematicas en TypeScript. Ademas, exploraras los operadores
de asignacion, como el operador de asignacién simple y los operadores
compuestos, para asignar valores a variables de forma eficiente.

2. ldentificadores: Comprenderas qué son los identificadores en TypeScript y
coémo utilizarlos para dar nombres significativos a variables, funciones y otros
elementos en tu codigo. Aprenderas las convenciones y buenas practicas
para nombrar identificadores de manera clara y legible.

10

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

3. Distincion entre mayusculas y minusculas: Entenderas la importancia de la
distincion entre mayusculas y minusculas en TypeScript y como afecta la
forma en que se interpretan los identificadores y las palabras clave.
Aprenderas a seguir las reglas de distincion de casos y evitar errores
comunes relacionados con la sensibilidad de mayusculas y minusculas.

4. Sentencias: Aprenderas qué son las sentencias en TypeScript y como
utilizarlas para construir la l6gica de tus programas. Exploraras diferentes
tipos de sentencias, como sentencias condicionales (if-else), bucles (for,
while) y sentencias de control de flujo (break, continue), para controlar el flujo
de ejecucion de tu codigo.

5. Comentarios: Aprenderas a utilizar comentarios en TypeScript para
documentar tu coédigo y hacerlo mas comprensible para ti y otros
desarrolladores. Conoceras los diferentes tipos de comentarios, como los
comentarios de una linea y los comentarios de multiples lineas, y aprenderas
como y cuando utilizarlos adecuadamente.

6. Punto y coma: Comprenderas la importancia del punto y coma en TypeScript
como separador de instrucciones y aprenderas a utilizarlo correctamente.
Exploraras las convenciones y buenas practicas relacionadas con el uso de
punto y coma en diferentes situaciones, como al finalizar una instruccion o en
la declaracion de variables.

7. Interpolacion: Aprenderas a utilizar la interpolacion de cadenas de texto en
TypeScript para combinar valores de variables con texto de una manera mas
concisa y legible. Conoceras la sintaxis y las mejores practicas para realizar
la interpolacion de cadenas y crear mensajes dinamicos en tus programas.

@ Objetivo de aprendizaje

1. Comprender la estructura basica de un programa escrito en TypeScript.

Familiarizarse con la sintaxis de TypeScript, incluyendo la declaracion de

variables, tipos de datos y funciones.

Practicar la creacion de funciones con parametros y valores de retorno.

Aprender a utilizar la consola para ejecutar programas y mostrar resultados.

5. Demostrar la capacidad para trabajar con cédigo fuente y utilizar un
repositorio para almacenar y entregar el cédigo.

6. Adquirir habilidades de resolucion de problemas y logica al desarrollar
soluciones para los requerimientos funcionales.

B W

[] Instrucciones

1. Utilizando typescript codifica las funciones que se indican en la seccion
requerimientos funcionales de este documento.
2. Las funciones deben ser codificadas en un archivo llamado app.ts.

11

3. Las funciones deben tener el nombre que se indica y el nUmero y tipo de
parametros que se especifican en la seccidn requerimientos funcionales.

4. En el archivo demo.ts se deben incluir ejemplos de cédigo que muestren el
correcto funcionamiento de las funciones.

5. Las funciones deben ser probadas y ejecutadas utilizando la consola.

6. El cédigo fuente final debe ser almacenado en este repositorio de GitHub.

= Entregables

e (Caodigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

Requerimientos funcionales

En estos requerimientos funcionales se especifican las acciones que deben realizar
las funciones y los tipos de datos que deben recibir y retornar. Las firmas de las
funciones indican la sintaxis correcta para definir las funciones, mostrando los
nombres y tipos de los parametros, asi como el tipo de dato que retorna cada
funcion.

1Jsum
Escribir una funcién que sume dos numeros.

sum(numberA: number, numberB): number;

2)subtract

Escribir una funcién que reste dos numeros.

subtract(numberA: number, numberB): number

3 multiply

Escribir una funcion que multiplique dos numeros.

multiply(numberA: number, numberB): number

4 divide

Escribir una funcién que divida dos niumeros.

divide(numberA: number, numberB): number

12

5 remainder

Escribir una funcién que obtenga el residuo de una division entera entre dos
numeros.

Firma de la funcion: remainder(numberA: number, numberB): number

%’ Ejecucién de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo

Por ejemplo:

None

npx ts-node demo

Ejecucion de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion

Por ejemplo:

None

npx jest add

® Comandos de Git y GitHub

Actualizacén del repositorio local

Cada vez que se terminé e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

13

None

git add archivo.ext

Un git add por cada archivo que se actualizd

Una vez que se agregaron los archivo para la nueva version, confirmar la nueva
version utilizando:

None

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualizacion del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript
TypeScript Deep Dive

TypeScript in 5 minutes
MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

14

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

& Ejercicio 03: Primeras lineas con Typescript

Los temas que se estudian al realizar este reto son:

1. Operadores aritméticos y de asignacion: Aprenderas a utilizar los operadores
aritméticos, como la suma, resta, multiplicacién y divisiéon, para realizar
operaciones matematicas en TypeScript. Ademas, exploraras los operadores
de asignacion, como el operador de asignacion simple y los operadores
compuestos, para asignar valores a variables de forma eficiente.

2. ldentificadores: Comprenderas qué son los identificadores en TypeScript y
como utilizarlos para dar nombres significativos a variables, funciones y otros
elementos en tu codigo. Aprenderas las convenciones y buenas practicas
para nombrar identificadores de manera clara y legible.

3. Distincidén entre mayusculas y minusculas: Entenderas la importancia de la
distincién entre mayusculas y minusculas en TypeScript y como afecta la
forma en que se interpretan los identificadores y las palabras clave.
Aprenderas a seguir las reglas de distincion de casos y evitar errores
comunes relacionados con la sensibilidad de mayusculas y minusculas.

4. Sentencias: Aprenderas qué son las sentencias en TypeScript y como
utilizarlas para construir la l6gica de tus programas. Exploraras diferentes
tipos de sentencias, como sentencias condicionales (if-else), bucles (for,
while) y sentencias de control de flujo (break, continue), para controlar el flujo
de ejecucion de tu codigo.

5. Comentarios: Aprenderas a utilizar comentarios en TypeScript para
documentar tu codigo y hacerlo mas comprensible para ti y otros
desarrolladores. Conoceras los diferentes tipos de comentarios, como los
comentarios de una linea y los comentarios de multiples lineas, y aprenderas
coémo y cuando utilizarlos adecuadamente.

6. Punto y coma: Comprenderas la importancia del punto y coma en TypeScript
como separador de instrucciones y aprenderas a utilizarlo correctamente.
Exploraras las convenciones y buenas practicas relacionadas con el uso de
punto y coma en diferentes situaciones, como al finalizar una instruccion o en
la declaracion de variables.

7. Interpolacion: Aprenderas a utilizar la interpolacion de cadenas de texto en
TypeScript para combinar valores de variables con texto de una manera mas
concisa y legible. Conoceras la sintaxis y las mejores practicas para realizar
la interpolacion de cadenas y crear mensajes dinamicos en tus programas.

@ Objetivo de aprendizaje

1. Comprender la estructura basica de un programa escrito en TypeScript.
2. Familiarizarse con la sintaxis de TypeScript, incluyendo la declaracion de
variables, tipos de datos y funciones.

15

w

Practicar la creacion de funciones con parametros y valores de retorno.

Aprender a utilizar la consola para ejecutar programas y mostrar resultados.

5. Demostrar la capacidad para trabajar con cédigo fuente y utilizar un
repositorio para almacenar y entregar el codigo.

6. Adquirir habilidades de resolucion de problemas y l6gica al desarrollar

soluciones para los requerimientos funcionales.

s

[] Instrucciones

1. Utilizando typescript codifica las funciones que se indican en la seccién
requerimientos funcionales de este documento.

2. Las funciones deben ser codificadas en un archivo llamado app.ts.

3. Las funciones deben tener el nombre que se indica y el numero y tipo de
parametros que se especifican en la seccion requerimientos funcionales.

4. En el archivo demo.ts se deben incluir ejemplos de cédigo que muestren el
correcto funcionamiento de las funciones.

5. Las funciones deben ser probadas y ejecutadas utilizando la consola.

6. El codigo fuente final debe ser almacenado en este repositorio de GitHub.

= Entregables

e (Cadigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

Requerimientos funcionales

En estos requerimientos funcionales se especifican las acciones que deben realizar
las funciones y los tipos de datos que deben recibir y retornar. Las firmas de las
funciones indican la sintaxis correcta para definir las funciones, mostrando los
nombres y tipos de los parametros, asi como el tipo de dato que retorna cada
funcién.

1 getDollars

Escribe una funcion llamada getbollars que tome un valor en pesos mexicanos
como parametro y lo convierta a dolares estadounidenses. La funcién debe
considerar un tipo de cambio dado como un segundo parametro. Devuelve el valor
convertido a dolares.

Parametros:

e pesos: Un numero que representa la cantidad en pesos mexicanos.

16

e tipoCambio: Un numero que representa el tipo de cambio de pesos a ddlares.
Resultado:

e Un numero que representa la cantidad convertida en dolares.

getDollars(pesos: number, tipoCambio: number): number

2 getAreaCircle

Escribe una funcién llamada getAreacircle que calcule el area de un circulo. La
funcion debe tomar como parametro el radio del circulo y devolver el area. Utiliza el
valor de 1T (pi) para realizar el calculo.

Parametros:
e radio: Un numero que representa el radio del circulo.
Resultado:

e Un numero que representa el area del circulo.

getAreaCircle(radio: number): number

3 getFahrenheit

Escribe una funcion llamada getFahrenheit que convierta una temperatura dada en
grados Celsius a grados Fahrenheit. La funcion debe tomar como parametro la
temperatura en grados Celsius y devolver el valor equivalente en grados Fahrenheit.

Parametros:
e gradosCelsius: Un numero que representa la temperatura en grados Celsius.
Resultado:

e Un numero que representa la temperatura convertida en grados Fahrenheit.

getFahrenheit(gradosCelsius: number): number

4 getAreaTrapezoid

Escribe una funcion llamada getAreaTrapezoid que calcule el area de un trapecio. La
funcién debe tomar como parametros las longitudes de las dos bases y la altura del
trapecio. Devuelve el area calculada.

Parametros:

17

® baseMayor: Un numero que representa la longitud de la base mayor del
trapecio.

e baseMenor: Un numero que representa la longitud de la base menor del
trapecio.

e altura: Un numero que representa la altura del trapecio.

Resultado:

e Un numero que representa el area del trapecio.

getAreaTrapezoid(baseMayor: number, baseMenor: number, altura: number): number

%’ Ejecucién de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo

Por ejemplo:
None

npx ts-node demo

Ejecucion de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion

Por ejemplo:

None

npx jest add

& Comandos de Git y GitHub

Actualizacon del repositorio local

18

Cada vez que se termind e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

None

git add archivo.ext

Un git add por cada archivo que se actualizd

Una vez que se agregaron los archivo para la nueva versién, confirmar la nueva
version utilizando:

None

git commit -m "mensaje”

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualizacién del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript

TypeScript Deep Dive
TypeScript in 5 minutes
MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

19

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

& Ejercicio 04: Introduccion a funciones

Los temas que se estudian al realizar este reto son:

1.

Sintaxis basica de una funcion. Aprenderas a definir funciones en TypeScript,
entendiendo la estructura basica que incluye el nombre de la funcién, los
parametros, y el cuerpo de la funcion donde se ejecuta el codigo.

. Parametros y valores de retorno. Descubriras como pasar datos a las

funciones mediante parametros y como obtener un resultado mediante
valores de retorno, comprendiendo la importancia de los tipos en ambos
casos.

@ Objetivos de aprendizaje

. Comprender la sintaxis basica de una funcién en TypeScript, incluyendo la

declaracién de funciones, el nombre de la funcion, los parametros y el cuerpo
de la funcion.

Ser capaz de declarar y definir una funcién simple en TypeScript, utilizando la
palabra clave "function", y asignarle un nombre descriptivo.

Aprender a declarar y utilizar parametros en una funcién, comprendiendo
como se definen y como se accede a sus valores dentro del cuerpo de la
funcién.

Entender la importancia de los tipos de datos en los parametros de una
funcién y como TypeScript permite especificar los tipos de datos de los
parametros para mejorar la seguridad y la legibilidad del codigo.

Ser capaz de escribir una funcion que devuelve un valor especifico y
entender como se especifica el tipo de valor de retorno en la declaracion de
la funcién.

Practicar la creacién de funciones simples que aceptan parametros, realizan
operaciones en ellos y devuelven un resultado coherente.

[] Instrucciones

. Utilizando typescript codifica las funciones que se indican en la seccion

requerimientos funcionales de este documento.

Las funciones deben ser codificadas en un archivo llamado app.ts.

Las funciones deben tener el nombre que se indica y el nUmero y tipo de
parametros que se especifican en la seccidn requerimientos funcionales.

. En el archivo demo.ts se deben incluir ejemplos de cédigo que muestren el

correcto funcionamiento de las funciones.
Las funciones deben ser probadas y ejecutadas utilizando la consola.
El codigo fuente final debe ser almacenado en este repositorio de GitHub.

20

= Entregables

e (Caodigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

M Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones especificas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parametros, asi como el tipo de dato que
retorna cada funcion.

1 getAverage

Escribe una funcién que tome tres numeros como parametros y calcule el promedio
de esos tres valores. Asegurate de que la funcién retorne el resultado como un
numero.

getAverage(numberl: number, number2: number, number3: number): number

2)getSquarePerimeter

Escribe una funcidn que calcule el perimetro de un cuadrado. La funcion debe
recibir como parametro la longitud de un lado del cuadrado y devolver el valor del
perimetro.

getSquarePerimeter(sideLength: number): number

(3)getMilesToKilometers

Disefa una funcion que convierta una distancia de millas a kildmetros. La funcion
debe recibir la distancia en millas como argumento y devolver el equivalente en
kildmetros, utilizando la conversion estandar donde 1 milla es igual a 1.60934
kilometros.

getMilesToKilometers(miles: number): number

(4 getDoubleNumber

Implementa una funcién que calcule y devuelva el doble de un numero. La funcion
debe aceptar un numero como parametro y retornar el resultado de multiplicar ese
numero por dos.

getDoubleNumber (number: number): number

21

(5)getTriangleArea

Crea una funcion que calcule el area de un triangulo. La funcién debe aceptar la
base y la altura del triangulo como parametros, y devolver el area.

getTriangleArea(base: number, height: number): number

(6)getSphereVolume

debe recibir el radio de la esfera como parametro y devolver el volumen, utilizando
la férmula 4/3 x Pi x radio”3.

getSphereVolume(radius: number): number

%’ Ejecucién de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo

Por ejemplo:
None

npx ts-node demo

Ejecucion de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion

Por ejemplo:

None

npx jest add

® Comandos de Git y GitHub

Actualizacion del repositorio local

22

Cada vez que se termind e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

None

git add archivo.ext

Un git add por cada archivo que se actualizd

Una vez que se agregaron los archivo para la nueva versién, confirmar la nueva
version utilizando:

None

git commit -m "mensaje”

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualizacién del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript

TypeScript Deep Dive
TypeScript in 5 minutes
MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

23

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

& Ejercicio 05: Programacion de funciones

Los temas que se estudian al realizar este reto son:

1.

Sintaxis basica de una funcion. Aprenderas a definir funciones en TypeScript,
entendiendo la estructura basica que incluye el nombre de la funcién, los
parametros, y el cuerpo de la funcion donde se ejecuta el codigo.

. Parametros y valores de retorno. Descubriras como pasar datos a las

funciones mediante parametros y como obtener un resultado mediante
valores de retorno, comprendiendo la importancia de los tipos en ambos
casos.

@ Objetivos de aprendizaje

. Comprender la sintaxis basica de una funcién en TypeScript, incluyendo la

declaracién de funciones, el nombre de la funcion, los parametros y el cuerpo
de la funcion.

Ser capaz de declarar y definir una funcién simple en TypeScript, utilizando la
palabra clave "function", y asignarle un nombre descriptivo.

Aprender a declarar y utilizar parametros en una funcién, comprendiendo
como se definen y como se accede a sus valores dentro del cuerpo de la
funcién.

Entender la importancia de los tipos de datos en los parametros de una
funcién y como TypeScript permite especificar los tipos de datos de los
parametros para mejorar la seguridad y la legibilidad del codigo.

Ser capaz de escribir una funcion que devuelve un valor especifico y
entender como se especifica el tipo de valor de retorno en la declaracion de
la funcién.

Practicar la creacién de funciones simples que aceptan parametros, realizan
operaciones en ellos y devuelven un resultado coherente.

[] Instrucciones

. Utilizando typescript codifica las funciones que se indican en la seccion

requerimientos funcionales de este documento.

Las funciones deben ser codificadas en un archivo llamado app.ts.

Las funciones deben tener el nombre que se indica y el nUmero y tipo de
parametros que se especifican en la seccidn requerimientos funcionales.

. En el archivo demo.ts se deben incluir ejemplos de cédigo que muestren el

correcto funcionamiento de las funciones.
Las funciones deben ser probadas y ejecutadas utilizando la consola.
El codigo fuente final debe ser almacenado en este repositorio de GitHub.

24

= Entregables

e (Caodigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

M Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones especificas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parametros, asi como el tipo de dato que
retorna cada funcion.

1 getHypotenuse

Escribe una funcién que calcule la longitud de la hipotenusa de un triangulo
rectangulo. La funcion debe recibir las longitudes de los dos catetos como
parametros y devolver la longitud de la hipotenusa.

getHypotenuse(sidel: number, side2: number): number

2JgeSeconds

Escribe una funcidn que convierta horas a segundos. La funcion debe recibir la
cantidad de horas como parametro y devolver la cantidad de segundos equivalente,
donde 1 hora es igual a 3600 segundos.

getSeconds (hours: number): number

3 getMiles
Implementa una funcién que convierta distancias en kilémetros a millas. La funcion

debe recibir la distancia en kilbmetros como argumento y devolver la distancia
equivalente en millas, donde 1 kildbmetro es igual a 0.621371 millas.

getMiles(kilometers: number): number

4 getLitres

Crea una funcién que convierta pies cubicos a litros. La funcién debe recibir el
volumen en pies cubicos como argumento y devolver el volumen equivalente en
litros, donde 1 pie cubico es igual a 28.3168 litros.

getlLitres(cubicFeet: number): number

25

(5)getCylinderSurfaceArea

Crea una funcion que calcule el area de la superficie lateral de un cilindro. La
funcién debe recibir el radio y la altura del cilindro como parametros y devolver el
area de la superficie lateral, donde el area de la superficie lateral de un cilindro se
calcula como 2 x 11 x radio x altura.

getCylinderSurfaceArea(radius: number, height: number): number

%’ Ejecucién de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo
Por ejemplo:

None

npx ts-node demo

Ejecucion de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion
Por ejemplo:

None

npx jest add

& Comandos de Git y GitHub

Actualizacon del repositorio local

Cada vez que se termind e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

26

None

git add archivo.ext

Un git add por cada archivo que se actualizd

Una vez que se agregaron los archivo para la nueva version, confirmar la nueva
version utilizando:

None

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualizacion del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript
TypeScript Deep Dive

TypeScript in 5 minutes
MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

& Ejercicio 06: Introduccion a Sentencias
condicionales

Los temas que se estudian al realizar este reto son:

27

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

Sintaxis de las estructuras condicionales en TypeScript.

El operador ternario como una forma concisa de expresar condiciones.
La sentencia if y su uso en la toma de decisiones.

La sentencia if...else para manejar casos alternativos.

La sentencia if...else if para evaluar multiples condiciones en orden.
Coémo controlar el flujo de un programa con condicionales.

@ Objetivos de aprendizaje

e Comprender la sintaxis de las estructuras condicionales en TypeScript y su
importancia en la programacion.

e Ultilizar el operador ternario de manera efectiva para expresar condiciones de
forma concisa en sus programas.

e Dominar el uso de la sentencia if para tomar decisiones basadas en
condiciones especificas.

e Aplicar la sentencia if...else para manejar casos alternativos y ejecutar
diferentes bloques de cddigo segun la evaluacion de una condicién.

e Utilizar la sentencia if...else if para evaluar multiples condiciones en orden y
ejecutar el bloque de codigo correspondiente al primer caso verdadero.

e Aprender a controlar el flujo de un programa mediante la implementacién de
estructuras condicionales.

[] Instrucciones

1. Utilizando typescript codifica las funciones que se indican en la seccion
requerimientos funcionales de este documento.

2. Las funciones deben ser codificadas en un archivo llamado app.ts.

3. Las funciones deben tener el nombre que se indica y el numero y tipo de
parametros que se especifican en la seccidn requerimientos funcionales.

4. En el archivo demo.ts se deben incluir ejemplos de cédigo que muestren el
correcto funcionamiento de las funciones.

5. Las funciones deben ser probadas y ejecutadas utilizando la consola.

6. El cddigo fuente final debe ser almacenado en este repositorio de GitHub.

= Entregables

e (Caodigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

M Requerimientos funcionales

28

Los requerimientos funcionales se refieren a las acciones especificas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parametros, asi como el tipo de dato que
retorna cada funcion.

1)isAdult
Escribir una funcidn que reciba como parametro un numero con el valor de la edad

de una persona y regrese true Si €s mayor de edad o false Si no es.

isAdult(age: number): boolean

2 toTitle

Escribir una funcién que reciba como parametros un string cCOn un mensaje y un
booleano para indicar si es un titulo con true 0 si no lo es con false. Si el valor del
booleano es true, regresara el mismo mensaje pero con todas las letras en
mayusculas.

toTitle(message: string, isTitle: boolean): string

3sayHello*

Escribir una funcién que reciba como parametro un string con el nombre de una
persona y un booleano para indicar si esta persona es un administrador o no. Si la
persona es un administrador, la funcion regresara un saludo y la clave de acceso del
sistema, que es "1234", por ejemplo "Hola, Juan. Tu clave es 1234". Si la persona
no es un administrador, la funcion regresara un saludo simple, por ejemplo "Hola,
Juan".

sayHello(name: string, isAdmin: boolean): string

4 totalCost

Escribir una funcién que reciba como parametros el costo del producto y la cantidad
de productos comprados. La funcidn debera regresar el costo total. Si el costo total
excede de $1000, deberé aplicar un descuento del 15%

totalCost(productCost: number, quantity: number): number

5 getDiscount*

Escribir una funcién que recibe como parametro el total de la venta y regrese el
porcentaje de descuento que le corresponde. Si la venta es mayor que $1000 el
descuento es del 25% de lo contrario el descuento es del 10%

getDiscount(total: number): number

29

_6)getCinemaCost

Escribir una funcién que reciba como parametros la fecha de la funcién de cine y el
numero de boletos a comprar. La funcion debera calcular el costo total, tomando en
cuenta que el costo de cada boleto es de $100, que los jueves hay promocién de
3x2 y que el resto de los dias se aplica un 10% de descuento.

getCinemaCost(date: Date, tickets: number): number

7)grade

Escribir una funcién que reciba como parametro un numero entero con una
calificacion y regrese una cadena de texto segun la siguiente escala:

Si la calificacién es mayor a 90, la funcién debe devolver "Champion!".
Si la calificacién es mayor a 80, la funcién debe devolver "Good".

Si la calificacion es mayor a 60, la funcién debe devolver "Not bad".
Para cualquier otro caso, la funcion debe devolver "Try again”.

grade(score: number): string

hasAccess

Escribe una funcién que determine si una persona tiene acceso segun el color de su
camisa y el color de sus zapatos. La funcion debe recibir dos cadenas de texto
como parametros, que representan el color de la camisa y el color de los zapatos. Si
alguno de los dos es de color blanco, la funcion debe devolver true; en caso
contrario, debe devolver false.

hasAccess(shirtColor: string, shoesColor: string): boolean

isStudent

Escribir una funcién que reciba como parametros si tiene o no identificacion de
estudiante y la edad. Para ser estudiante es necesario tener identificacion y ser
mayor de 18. La funcion debe regresar true si es estudiante o false si no lo es.

isStudent(hasID: boolean, age: number): boolean

%’ Ejecucion de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo

30

Por ejemplo:

None

npx ts-node demo

Ejecucion de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion

Por ejemplo:

None

npx jest add

® Comandos de Git y GitHub

Actualizacon del repositorio local

Cada vez que se termind e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

None

git add archivo.ext

Un git add por cada archivo que se actualizd

Una vez que se agregaron los archivo para la nueva versién, confirmar la nueva
version utilizando:

None

git commit -m "mensaje”

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

31

Actualizacién del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript

TypeScript Deep Dive
TypeScript in 5 minutes

MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

& Ejercicio 07 Sentencias condicionales

Los temas que se estudian al realizar este reto son:

Sintaxis de las estructuras condicionales en TypeScript.

El operador ternario como una forma concisa de expresar condiciones.
La sentencia if y su uso en la toma de decisiones.

La sentencia if...else para manejar casos alternativos.

La sentencia if...else if para evaluar multiples condiciones en orden.
Como controlar el flujo de un programa con condicionales.

@ Objetivos de aprendizaje

e Comprender la sintaxis de las estructuras condicionales en TypeScript y su
importancia en la programacion.

e Utilizar el operador ternario de manera efectiva para expresar condiciones de
forma concisa en sus programas.

e Dominar el uso de la sentencia if para tomar decisiones basadas en
condiciones especificas.

e Aplicar la sentencia if...else para manejar casos alternativos y ejecutar
diferentes bloques de cddigo segun la evaluacion de una condicién.

32

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

e Utilizar la sentencia if...else if para evaluar multiples condiciones en orden y
ejecutar el bloque de codigo correspondiente al primer caso verdadero.

e Aprender a controlar el flujo de un programa mediante la implementacion de
estructuras condicionales.

[] Instrucciones

1. Utilizando typescript codifica las funciones que se indican en la seccion
requerimientos funcionales de este documento.

2. Las funciones deben ser codificadas en un archivo llamado app.ts.

3. Las funciones deben tener el nombre que se indica y el numero y tipo de
parametros que se especifican en la seccion requerimientos funcionales.

4. En el archivo demo.ts se deben incluir ejemplos de cddigo que muestren el
correcto funcionamiento de las funciones.

5. Las funciones deben ser probadas y ejecutadas utilizando la consola.

6. El codigo fuente final debe ser almacenado en este repositorio de GitHub.

= Entregables

e Caddigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

M Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones especificas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parametros, asi como el tipo de dato que
retorna cada funcion.

1)isPair
Esta funcidén debe recibir un nUmero entero como parametro y devolver true si el

numero es par o false Si es impar. Debes utilizar el operador ternario para
implementar la funcién.

isPair(number: number): boolean

33

(2)startsWithVowel

Crea una funcion que determine si una palabra comienza con una vocal. La funcion
debe recibir una cadena de texto como parametro y devolver true si la palabra
comienza con una vocal o false Si N0 comienza con una vocal.

startsWithVowel(word: string): boolean

3)getLongestWord

Escribe una funcién que reciba como parametros dos palabras y devuelva la palabra
mas larga. Si ambas palabras tienen la misma longitud, la funcién debe devolver la
primera palabra.

getLongestWord(wordl: string, word2: string): string

4 getSeason

Crea una funcién que determine la estacion del afio en funcién del mes. La funcion
debe recibir una fecha en formato Date como parametro y devolver una cadena de
texto con el nombre de la estacion correspondiente:

Enero, febrero y marzo: "Invierno"

Abril, mayo y junio: "Primavera"

Julio, agosto y septiembre: "Verano"
Octubre, noviembre y diciembre: "Otofio"

getSeason(date: Date): string

(5)calculateShippingCost

Crea una funcién que calcule el costo de envio de un paquete en funcion de su
peso. Si el peso es menor o igual a 5 kg, el costo es $10; de lo contrario, el costo es
de $15.

calculateShippingCost(weight: number): number

 6)convertGradeToLetter

Crea una funcion que convierta una calificacion numérica en una letra de nota. La
funcién debe recibir un nimero entero como parametro y devolver la letra de nota
correspondiente segun la siguiente escala:

90 a 100: "A"
80 a 89: "B"
70a79:"C"
0a70:"F"

34

e Sila calificacién no esta en el rango de 0 a 100, la funcién debe devolver
"Nota invalida".

convertGradeTolLetter(grade: number): string

7)classifyNumber

Crea una funcion que clasifique un numero en funcién de su signo. La funcién debe
recibir un numero entero como parametro y devolver una cadena de texto con la
clasificacion del numero:

e Siel numero es mayor que cero, la funcidon debe devolver "Positivo".
e Siel numero es menor que cero, la funcion debe devolver "Negativo".
e Siel numero es igual a cero, la funcion debe devolver "Cero".

classifyNumber(number: number): string

8 classifyTriangle

Crea una funcion que clasifique un triangulo en funcion de la longitud de sus lados.
La funcién debe recibir tres nUmeros enteros como parametros que representan las
longitudes de los lados del triangulo y devolver una cadena de texto con la
clasificacion del triangulo:

e Sitodos los lados son iguales, la funcidén debe devolver "Equilatero”.
e Siexactamente dos lados son iguales, la funcion debe devolver "Isdsceles".
e Sitodos los lados son diferentes, la funcion debe devolver "Escaleno".

classifyTriangle(sidel: number, side2: number, side3: number): string

9classifyAngle

Crea una funcion que clasifique un angulo en funciéon de su medida. La funcion debe
recibir un numero entero como parametro que representa la medida del angulo en
grados y devolver una cadena de texto con la clasificacion del angulo:

e Siel angulo es agudo (menos de 90 grados), la funcién debe devolver
"Angulo Agudo".

e Si el angulo es recto (exactamente 90 grados), la funcion debe devolver
"Angulo Recto".

e Siel angulo es obtuso (entre 90 y 180 grados), la funcidon debe devolver
"Angulo Obtuso".

e Siel angulo no esta en ninguno de los rangos anteriores, 0 0 menor que cero
y igual o mayor a 180, la funcién debe devolver "Angulo Invalido".

classifyAngle(angle: number): string

35

10 calculateDiscount

Crea una funcion que calcule el descuento aplicado a una compra en funcion del
monto total. La funcién debe recibir un nimero entero como parametro que
representa el monto total de la compra y devolver el monto con el descuento
aplicado segun las siguientes condiciones:

Si el monto es mayor o igual a $100, se aplica un 10% de descuento.
Si el monto es mayor o igual a $50 pero menor a $100, se aplica un 5% de
descuento.

e Si el monto es menor a $50, no se aplica descuento.

calculateDiscount(total: number): number

%’ Ejecucion de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo

Por ejemplo:
None

npx ts-node demo

Ejecucién de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion

Por ejemplo:

None

npx jest add

36

&8 Comandos de Git y GitHub

Actualizacon del repositorio local

Cada vez que se termind e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

None

git add archivo.ext

Un git add por cada archivo que se actualizd

Una vez que se agregaron los archivo para la nueva version, confirmar la nueva
version utilizando:

None

git commit -m "mensaje”

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualizacién del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript
TypeScript Deep Dive
TypeScript in 5 minutes
MDN JavaScript
DevDocs

TypeScript Playground

37

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play

Awesome TypeScript

& Ejercicio 08: Sentencias condicionales

Los temas que se estudian al realizar este reto son:

Sintaxis de las estructuras condicionales en TypeScript.

El operador ternario como una forma concisa de expresar condiciones.
La sentencia if y su uso en la toma de decisiones.

La sentencia if...else para manejar casos alternativos.

La sentencia if...else if para evaluar multiples condiciones en orden.
Como controlar el flujo de un programa con condicionales.

@ Obijetivos de aprendizaje

Comprender la sintaxis de las estructuras condicionales en TypeScript y su
importancia en la programacion.

Utilizar el operador ternario de manera efectiva para expresar condiciones de
forma concisa en sus programas.

Dominar el uso de la sentencia if para tomar decisiones basadas en
condiciones especificas.

Aplicar la sentencia if...else para manejar casos alternativos y ejecutar
diferentes bloques de codigo segun la evaluacion de una condicion.

Utilizar la sentencia if...else if para evaluar multiples condiciones en orden y
ejecutar el bloque de codigo correspondiente al primer caso verdadero.
Aprender a controlar el flujo de un programa mediante la implementacion de
estructuras condicionales.

[] Instrucciones

o

Utilizando typescript codifica las funciones que se indican en la secciéon
requerimientos funcionales de este documento.

Las funciones deben ser codificadas en un archivo llamado app.ts.

Las funciones deben tener el nombre que se indica y el numero y tipo de
parametros que se especifican en la seccion requerimientos funcionales.
En el archivo demo.ts se deben incluir ejemplos de cédigo que muestren el
correcto funcionamiento de las funciones.

Las funciones deben ser probadas y ejecutadas utilizando la consola.

El cédigo fuente final debe ser almacenado en este repositorio de GitHub.

38

https://github.com/dzharii/awesome-typescript

= Entregables

e (Caodigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

M Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones especificas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parametros, asi como el tipo de dato que
retorna cada funcion.

01 getCost

Escribe una funcién que determine el costo total de una compra de hamburgesas.
La funcion debe recibir como parametros la fecha de la compra y el numero de
hamburgesas compradas. El costo de cada hamburgesa es de $50 pesos. Para
determninar el costo total se debe considerar lo siguiente:

1. En enero todos los lunes se aplica un descuento del 5%.
En agosto si compra mas de 5 hamburgesas se aplica un descuento del 10%

3. En noviembre y diciembre, los jueves si compra mas de 10 hamburgesas se
aplica una promocién de 4x3.

4. En el resto de los meses si compra mas de 3 hamburgesas se aplica un
descuento del 5%.

getCost(date: Date, quantity: number): number

02 getSmallest
Escribe una funcidn que reciba tres numeros enteros diferentes y regrese como
resultado el menor de los tres numeros.

getSmallest(numberl: number, number2: number, number3: number): number

03 isEligibleForDiscount

Escribe una funcién que determine si un cliente es elegible para un descuento en
una tienda. La funcion debe recibir como parametros el total de la compra y si el
cliente es miembro de la tienda. Un cliente obtiene un descuento del 20% si el total
de la compra es mayor a $1000 o si es miembro de la tienda. Si el total de la compra
es menor o igual a $1000 y no es miembro, no tiene descuento.

39

isEligibleForDiscount(total: number, isMember: boolean): boolean

04 isLeapYear

Escribe una funcidon que determine si un afo es bisiesto. Un afio es bisiesto si es
divisible entre 4 y no es divisible entre 100, a menos que también sea divisible entre
400.

isLeapYear(year: number): boolean

05 isValidPassword

Escribe una funcién que determine si una contrasefia es valida. Una contrasefa es
valida si tiene al menos 8 caracteres y contiene al menos una vocal.

isValidPassword(password: string): boolean

06 getDiscountAmount

Escribe una funcion que calcule el descuento aplicado a una compra. La funcion
debe recibir como parametros el total de la compra y un booleano que indique si el
cliente es nuevo. Los clientes nuevos reciben un descuento del 15% o si el total de
la compra es mayor a $2000, el descuento es del 20%. Si ninguna de estas
condiciones se cumple, no hay descuento.

getDiscountAmount(total: number, isNewCustomer: boolean): number

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript
TypeScript Deep Dive

TypeScript in 5 minutes
MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

@& Ejercicio 09: Introduccion a sentencias
repetitivas

Los temas que se estudian al realizar este reto son:

40

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

Sintaxis de las estructuras repetitivas en TypeScript.
La sentencia for y su uso.

La sentencia while y su uso.

La sentencia do...while y su uso.

@ Objetivos de aprendizaje

1. Comprender la sintaxis de las estructuras repetitivas en TypeScript y su
importancia en la programacion.

2. Aprender a utilizar la sentencia for para crear ciclos controlados por una
variable de contador, permitiendo la ejecucion repetida de bloques de codigo.

3. Dominar el uso de la sentencia while para ejecutar ciclos basados en una
condicion booleana, con la capacidad de repetir el bloque mientras la
condicion sea verdadera.

4. Utilizar la sentencia do...while en TypeScript para crear ciclos que garantizan
que el bloque de cddigo se ejecute al menos una vez antes de verificar la
condicion.

5. Aplicar de manera efectiva las estructuras repetitivas para automatizar tareas
y procesar conjuntos de datos en programas TypeScript.

6. Entender cuando y cédmo usar cada tipo de estructura repetitiva segun los
requisitos especificos de un programa.

[] Instrucciones

1. Utilizando typescript codifica las funciones que se indican en la seccién
requerimientos funcionales de este documento.

2. Las funciones deben ser codificadas en un archivo llamado app.ts.

3. Las funciones deben tener el nombre que se indica y el numero y tipo de
parametros que se especifican en la seccion requerimientos funcionales.

4. En el archivo demo.ts se deben incluir ejemplos de cdédigo que muestren el
correcto funcionamiento de las funciones.

5. Las funciones deben ser probadas y ejecutadas utilizando la consola.

6. El codigo fuente final debe ser almacenado en este repositorio de GitHub.

= Entregables

e (Caodigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

"‘ Requerimientos funcionales

41

Los requerimientos funcionales se refieren a las acciones especificas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parametros, asi como el tipo de dato que
retorna cada funcion.

01 printNumbers

Utilizando el ciclo for, escribir una funcién que imprima los numeros del 1 al 10.

printNumbers(): void

printOddNumbers

Utilizando el ciclo for, escribir una funcién que imprima los numeros impares que
hay entre una numero a y un numero b.

printOddNumbers(a: number, b: number): void

02 invert

Utilizando el ciclo for, escribir una funcién que reciba dos numeros, start y end, Yy
regrese una cadena con los numeros desde end hasta start en orden descendente,
concatenados en una sola cadena. Por ejemplo, si start €s 1y end es 5, la funcion
deberia regresar "54321".

invert(start: number, end: number): string

03 countVowels

Utilizando el ciclo for, escribir una funcién que regrese un string que regrese
cuantas vocales tiene. Pueden usar la funcién charAt()

countVowels(word: string): string

04 countToTen

Utilizando el ciclo while, escribir una funcion que imprima los numeros del 1 al 10.

countToTen(): void

05 getSumFrom100

Utilizando el ciclo while, escribir una funcién que regrese la suma de los numeros
que hay entre 100 y n, donde n es siempre un numero menor a 100. Por ejemplo si
n es 98, la funcion deberia regresar 100 + 99 + 98 = 297.

42

getSumFrom100(n: number): number

06 countLetter

Utilizando el ciclo while, escribir una funcion que reciba como parametros un string y
una letra. La funcidén debera regresar cuantas veces esta presente esa letra dentro
del string. Por ejemplo, si el string es "hola mundo" y la letra es "0", la funcién
deberia regresar 2.

countLetter(text: string, letter: string): number

07 printToFive

Utilizando el ciclo do. . .while, escribir una funcién que imprima los numeros del 1 al
5.

printToFive(): void

08 printFromAToB

Utilizando el ciclo do. . .while, escribir una funcién que reciba dos numeros, ay b, y
regrese una cadena con los numeros desde a hasta b en orden ascendente,
concatenados en una sola cadena. Por ejemplo, siaes 3y bes 7, la funcion deberia
regresar "34567".

printFromAToB(a: number, b: number): string

09 getSum

Utilizando el ciclo do. . .while, escribir una funcién que regrese la sumatoria de los
numeros que hay entre 1 y n. Por ejemplo, si n = 4 debe regresar 10. Porque
1+2+3+4 =10

getSum(n: number): number

10 printMultiply

Utilizando el ciclo do. . .while, escribir una funcién que imprima la tabla de multiplicar
de un numero desde 1 hasta 12 como se muestra abajo:

None

Por ejemplo, si numero = 5 debe imprimir:

5 x 1
5 x 2

1l 1
= O
(av)

43

5 x 3 =15
5 x 12 = 60
printMultiply(number: number): void

11 fibonacci

Utilizando el ciclo do. . .while, escribir una funcién que regrese un string con los
numeros de la serie de Fibonacci hasta n. Por ejemplo, si n es 5, la funcién deberia
regresar "0, 1, 1, 2, 3".

fibonacci(n: number): string

%’ Ejecucién de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo
Por ejemplo:

None

npx ts-node demo

Ejecucion de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion
Por ejemplo:

None

npx jest add

44

&8 Comandos de Git y GitHub

Actualizacon del repositorio local

Cada vez que se termind e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

None

git add archivo.ext

Un git add por cada archivo que se actualizd

Una vez que se agregaron los archivo para la nueva version, confirmar la nueva
version utilizando:

None

git commit -m "mensaje”

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualizacién del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

T ri

TvpeScript Deep Dive
TypeScript in 5 minutes

MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

45

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

& Ejercicio 10: Sentencias repetitivas

Los temas que se estudian al realizar este reto son:

Sintaxis de las estructuras repetitivas en TypeScript.
La sentencia for y su uso.

La sentencia while y su uso.

La sentencia do...while y su uso.

@ Objetivos de aprendizaje

e Comprender la sintaxis de las estructuras repetitivas en TypeScript y su
importancia en la programacion.

e Aprender a utilizar la sentencia for para crear ciclos controlados por una
variable de contador, permitiendo la ejecucion repetida de bloques de cadigo.

e Dominar el uso de la sentencia while para ejecutar ciclos basados en una
condicion booleana, con la capacidad de repetir el bloque mientras la
condicion sea verdadera.

e Utilizar la sentencia do...while en TypeScript para crear ciclos que garantizan
que el bloque de cddigo se ejecute al menos una vez antes de verificar la
condicion.

e Aplicar de manera efectiva las estructuras repetitivas para automatizar tareas
y procesar conjuntos de datos en programas TypeScript.

e Entender cuando y como usar cada tipo de estructura repetitiva segun los
requisitos especificos de un programa.

] Instrucciones

1. Utilizando typescript codifica las funciones que se indican en la seccion
requerimientos funcionales de este documento.

2. Las funciones deben ser codificadas en un archivo llamado app.ts.

3. Las funciones deben tener el nombre que se indica y el numero y tipo de
parametros que se especifican en la seccion requerimientos funcionales.

4. En el archivo demo.ts se deben incluir ejemplos de cdédigo que muestren el

correcto funcionamiento de las funciones.

Las funciones deben ser probadas y ejecutadas utilizando la consola.

6. El codigo fuente final debe ser almacenado en este repositorio de GitHub.

o

= Entregables

46

e Coadigo fuente de la solucién a los requerimientos planteados en la seccion
requerimientos funcionales en este repositorio

M Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones especificas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parametros, asi como el tipo de dato que
retorna cada funcién.

(1 getSum

Escribe una funcion que calcule la suma de los niumeros desde el numero A hasta el
numero B utilizando un ciclo for. La funcién debe regresar la suma total. Por
ejemplo, si numberA = 1Yy numberB = 5, la funcidon debe regresar 15 (1 +2 + 3 + 4 + 5).

getSum(numberA: number, numberB: number): number

2 getSequence

Escribe una funcién que genere un string con una secuencia de numeros
descendente desde el numero A hasta el numero B utilizando un ciclo for. Si el
numero A es menor que el numero B, la funcién debe regresar el string "-1". Por
ejemplo, si numberA = 20y numberB = 15, la funcidn debe regresar el string "20 19 18
17 16 15". Pero si numberA = 15 Yy numberB = 20, la funcion debe regresar "-1".

getSequence(numberA: number, numberB: number): string

3)getEvenSum

Escribe una funcién que calcule la suma de los numeros pares entre 1 y N utilizando
un ciclo while. La funcién debe regresar la suma total. Por ejemplo, siN = 10, la
funcién debe regresar3e (2 +4 +6 + 8 + 10).

getEvenSum(N: number): number

4 count5and3

Escribe una funcién que cuente cuantos numeros multiplos de 5y 3 existen entre 1
y N utilizando un ciclo while. La funcién debe regresar la cantidad total. Por ejemplo,
SiN = 39, la funcion debe regresar 2 (15, 30).

count5and3(n: number): number

47

5 calculatePower

Escribe una funcién que tome dos numeros enteros, base y exponent, y calcule la
potencia de base elevado a exponent utilizando un ciclo do. .while. La funcion debe
regresar el resultado de la potencia. Por ejemplo, si base = 2y exponent = 3, la
funcién debe regresar 8 (2 x 2 x 2).

calculatePower(base: number, exponent: number): number

_6)countVowels

Escribe una funcidn que reciba una cadena de texto y cuente cuantas vocales (a, e,
i, 0, u) contiene utilizando un ciclo do. .while. La funcion debe regresar la cantidad de
vocales encontradas en la cadena. Por ejemplo, si text = "hello", la funcién debe
regresar 2.

countVowels(text: string): number

7 countCharacters

Escribe una funcién que reciba una cadena de texto y cuente cuantos caracteres
contiene, ignorando los espacios, puntos y comas. Usa un ciclo para recorrer la
cadena y contar los caracteres. La funcion debe regresar el numero total de
caracteres. No esta permitido utilizar la funcidén 1ength de JavaScript.

countCharacters(text: string): number

8 sumDigits

Escribe una funcion que reciba un numero entero y utilice un ciclo para sumar los
digitos del numero. Por ejemplo, si el numero es 123, la funcidon debe regresar 6
(porque 1 + 2 + 3 = 6).

sumDigits(number: number): number

9 reverseString

Escribe una funcién que reciba una cadena de texto y utilice un ciclo para invertir el
orden de los caracteres. La funcién debe regresar la cadena invertida. Por ejemplo,
si la cadena es "hola", debe regresar "aloh". No puedes utilizar el método reverse
de JavaScript.

reverseString(text: string): string

] factorial

Escribe una funcién que reciba un numero entero positivo y utilice un ciclo para
calcular el factorial de ese numero. El factorial de un niumero es el producto de todos

48

los numeros enteros desde 1 hasta ese numero. Por ejemplo, el factorial de 5 es 5 *
4 % 3 %2 %1 =120.

factorial(n: number): number

%’ Ejecucién de programas

Para ejecutar un programa utilizar:

None

npx ts-node nombre-archivo
Por ejemplo:

None

npx ts-node demo

Ejecucion de pruebas unitarias

Para ejecutar una prueba unitaria utilizar:

None

npx jest nombre-de-funcion
Por ejemplo:

None

npx jest add

® Comandos de Git y GitHub

Actualizacon del repositorio local

Cada vez que se terminé e actualizar uno o mas archivo utilizar, pasar los cambios a
staging utilizando:

None

git add archivo.ext

Un git add por cada archivo que se actualizd

49

Una vez que se agregaron los archivo para la nueva version, confirmar la nueva
version utilizando:

None

git commit -m "mensaje"
Important

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualizacién del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

None

git push origin

= Recursos

Aqui tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

TypeScript

T ript D Div
TypeScript in 5 minutes
MDN JavaScript
DevDocs

TypeScript Playground
Awesome TypeScript

50

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

	CONTENIDO
	
	Presentación
	
	
	🥷 Ejercicio 01 - Hola, mundo
	🎯 Objetivo de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ sayHelloWithName
	2️⃣ add
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 02: Sintaxis básica de Typescript
	🎯 Objetivo de aprendizaje
	📋 Instrucciones
	📥 Entregables
	Requerimientos funcionales
	1️⃣ sum
	2️⃣ subtract
	3️⃣ multiply
	4️⃣ divide
	5️⃣ remainder
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 03: Primeras líneas con Typescript
	🎯 Objetivo de aprendizaje
	📋 Instrucciones
	📥 Entregables
	Requerimientos funcionales
	1️⃣ getDollars
	2️⃣ getAreaCircle
	3️⃣ getFahrenheit
	4️⃣ getAreaTrapezoid
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 04: Introducción a funciones
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ getAverage
	2️⃣ getSquarePerimeter
	3️⃣ getMilesToKilometers
	4️⃣ getDoubleNumber
	5️⃣ getTriangleArea
	6️⃣ getSphereVolume
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 05: Programación de funciones
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ getHypotenuse
	2️⃣ geSeconds
	3️⃣ getMiles
	4️⃣ getLitres
	5️⃣ getCylinderSurfaceArea
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 06: Introducción a Sentencias condicionales
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ isAdult
	2️⃣ toTitle
	3️⃣ sayHello*
	4️⃣ totalCost
	5️⃣ getDiscount*
	6️⃣ getCinemaCost
	7️⃣ grade
	8️⃣ hasAccess
	9️⃣ isStudent
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 07 Sentencias condicionales
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ isPair
	2️⃣ startsWithVowel
	3️⃣ getLongestWord
	4️⃣ getSeason
	5️⃣ calculateShippingCost
	6️⃣ convertGradeToLetter
	7️⃣ classifyNumber
	8️⃣ classifyTriangle
	9️⃣ classifyAngle
	10 calculateDiscount
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub
	📚 Recursos

	🥷 Ejercicio 08: Sentencias condicionales
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	01 getCost
	02 getSmallest
	03 isEligibleForDiscount
	04 isLeapYear
	05 isValidPassword
	06 getDiscountAmount

	📚 Recursos

	🥷 Ejercicio 09: Introducción a sentencias repetitivas
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables

	👨‍💻 Requerimientos funcionales
	01 printNumbers
	printOddNumbers
	02 invert
	03 countVowels
	04 countToTen
	05 getSumFrom100
	06 countLetter
	07 printToFive
	08 printFromAToB
	09 getSum
	10 printMultiply
	11 fibonacci
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 10: Sentencias repetitivas
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ getSum
	2️⃣ getSequence
	3️⃣ getEvenSum
	4️⃣ count5and3
	5️⃣ calculatePower
	6️⃣ countVowels
	7️⃣ countCharacters
	8️⃣ sumDigits
	9️⃣ reverseString
	🔟 factorial
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

