

FACULTAD DE TELEMÁTICA

INTRODUCCIÓN A LA PROGRAMACIÓN

CARLOS ALBERTO FLORES CORTÉS

Antología digital con Ejercicios

Esta obra está bajo una Licencia Creative Commons
Atribución-NoComercial-CompartirIgual 4.0 Internacional.

1

CONTENIDO

CONTENIDO​ 2
Presentación​ 6
🥷 Ejercicio 01 - Hola, mundo​ 7
🎯 Objetivo de aprendizaje​ 7
📋 Instrucciones​ 7
📥 Entregables​ 8
👨‍💻 Requerimientos funcionales​ 8

1️⃣ sayHelloWithName​ 8
2️⃣ add​ 8
🚀 Ejecución de programas​ 9
🚦 Ejecución de pruebas unitarias​ 9
Comandos de Git y GitHub​ 9

📚 Recursos​ 10
🥷 Ejercicio 02: Sintaxis básica de Typescript​ 10
🎯 Objetivo de aprendizaje​ 11
📋 Instrucciones​ 11
📥 Entregables​ 12
Requerimientos funcionales​ 12

1️⃣ sum​ 12
2️⃣ subtract​ 12
3️⃣ multiply​ 12
4️⃣ divide​ 12
5️⃣ remainder​ 13
🚀 Ejecución de programas​ 13
🚦 Ejecución de pruebas unitarias​ 13
Comandos de Git y GitHub​ 13

📚 Recursos​ 14
🥷 Ejercicio 03: Primeras líneas con Typescript​ 15
🎯 Objetivo de aprendizaje​ 15
📋 Instrucciones​ 16
📥 Entregables​ 16
Requerimientos funcionales​ 16

1️⃣ getDollars​ 16
2️⃣ getAreaCircle​ 17
3️⃣ getFahrenheit​ 17
4️⃣ getAreaTrapezoid​ 17
🚀 Ejecución de programas​ 18
🚦 Ejecución de pruebas unitarias​ 18
Comandos de Git y GitHub​ 18

2

📚 Recursos​ 19
🥷 Ejercicio 04: Introducción a funciones​ 20
🎯 Objetivos de aprendizaje​ 20
📋 Instrucciones​ 20
📥 Entregables​ 21
👨‍💻 Requerimientos funcionales​ 21

1️⃣ getAverage​ 21
2️⃣ getSquarePerimeter​ 21
3️⃣ getMilesToKilometers​ 21
4️⃣ getDoubleNumber​ 21
5️⃣ getTriangleArea​ 22
6️⃣ getSphereVolume​ 22
🚀 Ejecución de programas​ 22
🚦 Ejecución de pruebas unitarias​ 22
Comandos de Git y GitHub​ 22

📚 Recursos​ 23
🥷 Ejercicio 05: Programación de funciones​ 24
🎯 Objetivos de aprendizaje​ 24
📋 Instrucciones​ 24
📥 Entregables​ 25
👨‍💻 Requerimientos funcionales​ 25

1️⃣ getHypotenuse​ 25
2️⃣ geSeconds​ 25
3️⃣ getMiles​ 25
4️⃣ getLitres​ 25
5️⃣ getCylinderSurfaceArea​ 26
🚀 Ejecución de programas​ 26
🚦 Ejecución de pruebas unitarias​ 26
Comandos de Git y GitHub​ 26

📚 Recursos​ 27
🥷 Ejercicio 06: Introducción a Sentencias condicionales​ 27
🎯 Objetivos de aprendizaje​ 28
📋 Instrucciones​ 28
📥 Entregables​ 28
👨‍💻 Requerimientos funcionales​ 28

1️⃣ isAdult​ 29
2️⃣ toTitle​ 29
3️⃣ sayHello*​ 29
4️⃣ totalCost​ 29
5️⃣ getDiscount*​ 29
6️⃣ getCinemaCost​ 30
7️⃣ grade​ 30
8️⃣ hasAccess​ 30
9️⃣ isStudent​ 30

3

🚀 Ejecución de programas​ 30
🚦 Ejecución de pruebas unitarias​ 31
Comandos de Git y GitHub​ 31

📚 Recursos​ 32
🥷 Ejercicio 07 Sentencias condicionales​ 32
🎯 Objetivos de aprendizaje​ 32
📋 Instrucciones​ 33
📥 Entregables​ 33
👨‍💻 Requerimientos funcionales​ 33

1️⃣ isPair​ 33
2️⃣ startsWithVowel​ 34
3️⃣ getLongestWord​ 34
4️⃣ getSeason​ 34
5️⃣ calculateShippingCost​ 34
6️⃣ convertGradeToLetter​ 34
7️⃣ classifyNumber​ 35
8️⃣ classifyTriangle​ 35
9️⃣ classifyAngle​ 35
10 calculateDiscount​ 36
🚀 Ejecución de programas​ 36
🚦 Ejecución de pruebas unitarias​ 36
Comandos de Git y GitHub​ 37
📚 Recursos​ 37

🥷 Ejercicio 08: Sentencias condicionales​ 38
🎯 Objetivos de aprendizaje​ 38
📋 Instrucciones​ 38
📥 Entregables​ 39
👨‍💻 Requerimientos funcionales​ 39

01 getCost​ 39
02 getSmallest​ 39
03 isEligibleForDiscount​ 39
04 isLeapYear​ 40
05 isValidPassword​ 40
06 getDiscountAmount​ 40

📚 Recursos​ 40
🥷 Ejercicio 09: Introducción a sentencias repetitivas​ 40
🎯 Objetivos de aprendizaje​ 41
📋 Instrucciones​ 41
📥 Entregables​ 41

👨‍💻 Requerimientos funcionales​ 41
01 printNumbers​ 42
printOddNumbers​ 42
02 invert​ 42
03 countVowels​ 42

4

04 countToTen​ 42
05 getSumFrom100​ 42
06 countLetter​ 43
07 printToFive​ 43
08 printFromAToB​ 43
09 getSum​ 43
10 printMultiply​ 43
11 fibonacci​ 44
🚀 Ejecución de programas​ 44
🚦 Ejecución de pruebas unitarias​ 44
Comandos de Git y GitHub​ 45

📚 Recursos​ 45
🥷 Ejercicio 10: Sentencias repetitivas​ 46
🎯 Objetivos de aprendizaje​ 46
📋 Instrucciones​ 46
📥 Entregables​ 46
👨‍💻 Requerimientos funcionales​ 47

1️⃣ getSum​ 47
2️⃣ getSequence​ 47
3️⃣ getEvenSum​ 47
4️⃣ count5and3​ 47
5️⃣ calculatePower​ 48
6️⃣ countVowels​ 48
7️⃣ countCharacters​ 48
8️⃣ sumDigits​ 48
9️⃣ reverseString​ 48
🔟 factorial​ 48
🚀 Ejecución de programas​ 49
🚦 Ejecución de pruebas unitarias​ 49
Comandos de Git y GitHub​ 49

📚 Recursos​ 50

5

Presentación
La presente antología de ejercicios ha sido diseñada como material de apoyo para la
asignatura Introducción a la Programación, dirigida a estudiantes y personas que se
inician en el aprendizaje del pensamiento computacional y el desarrollo de software.

El documento reúne una serie de ejercicios organizados de manera progresiva, que abarcan
desde los conceptos más básicos de la programación, como la sintaxis elemental y el uso
de operadores, hasta temas fundamentales como funciones, estructuras condicionales y
ciclos. Cada ejercicio está compuesto por varios problemas que describen una función o
algoritmo a resolver, con el objetivo de fortalecer la comprensión lógica y la capacidad de
análisis del estudiante.

Los ejercicios han sido cuidadosamente diseñados para acompañar el proceso de
aprendizaje de forma gradual: comienzan con algoritmos sencillos y aumentan
paulatinamente en complejidad, llegando a plantear retos moderados que, sin ser difíciles,
invitan al estudiante a reflexionar, practicar y consolidar los conocimientos adquiridos. De
esta manera, la antología funciona como una guía práctica que permite poner en acción el
avance teórico visto en clase.

Si bien la sintaxis y las descripciones de los problemas fueron pensadas originalmente para
el lenguaje de programación TypeScript, los ejercicios no dependen de características
exclusivas de dicho lenguaje. Por ello, pueden adaptarse y utilizarse sin dificultad para
practicar con cualquier otro lenguaje de programación, lo que los convierte en un recurso
flexible y reutilizable.

Adicionalmente, se recomienda el uso de comandos básicos de Git para la gestión y
actualización de los ejercicios, tanto en repositorios locales como en plataformas remotas
como GitHub. Esta práctica busca fomentar desde etapas tempranas el uso de
herramientas fundamentales en el desarrollo de software profesional.

Finalmente, esta antología puede ser también un recurso valioso para instructores y
docentes, ya que funciona como un banco de ejercicios que puede integrarse fácilmente a
cursos, talleres o sesiones prácticas, facilitando la enseñanza y evaluación de los conceptos
básicos de programación.

6

🥷 Ejercicio 01 - Hola, mundo
Los temas que se estudian al realizar este reto son:

1.​ Sintaxis básica de TypeScript: Aprenderás a utilizar la sintaxis de TypeScript
para declarar variables y funciones, así como para implementar la lógica
necesaria para obtener el resultado esperado.

2.​ Tipos de datos en TypeScript: Aprenderás a utilizar los tipos de datos básicos
de TypeScript, incluyendo string, number y boolean, así como a declarar
variables con tipos de datos personalizados.

3.​ Interpolación de cadenas de texto: Aprenderás a utilizar la interpolación de
cadenas de texto para crear mensajes que incluyan valores de variables.

4.​ Funciones y valores de retorno: Los estudiantes aprenderán a crear
funciones que reciban parámetros y regresen valores, así como a utilizar los
valores de retorno en otras funciones.

5.​ Pruebas y demostración del funcionamiento: Aprenderás a utilizar la consola
para ejecutar programas y mostrar resultados.

6.​ Trabajo con repositorios de control de versiones: Aprenderás a utilizar un
repositorio de control de versiones para almacenar y entregar el código
fuente de sus programas.

Estos temas abarcan los aspectos fundamentales de TypeScript, incluyendo la
sintaxis, los tipos de datos, las funciones y las pruebas de programa. Al realizar este
ejercicio, los estudiantes tendrán la oportunidad de consolidar su comprensión de
estos conceptos y desarrollar habilidades prácticas en la implementación de código
en TypeScript.

🎯 Objetivo de aprendizaje

1.​ Comprender la estructura básica de un programa escrito en TypeScript.
2.​ Familiarizarse con la sintaxis de TypeScript, incluyendo la declaración de

variables, tipos de datos y funciones.
3.​ Practicar la creación de funciones con parámetros y valores de retorno.
4.​ Aprender a utilizar la consola para ejecutar programas y mostrar resultados.
5.​ Demostrar la capacidad para trabajar con código fuente y utilizar un

repositorio para almacenar y entregar el código.
6.​ Adquirir habilidades de resolución de problemas y lógica al desarrollar

soluciones para los requerimientos funcionales.

📋 Instrucciones

7

None

None

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

👨‍💻 Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones específicas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parámetros, así como el tipo de dato que
retorna cada función.

1️⃣ sayHelloWithName
Escribe una función llamada sayHelloWithName que reciba como parámetro una
cadena de texto (String) con el nombre de una persona y regrese otra cadena de
texto (String) con el siguiente formato: Hola, <nombre>!, donde <nombre> es el nombre
de la persona que se recibió como parámetro.

sayHelloWithName(name: string): string

2️⃣ add
Escribir una función llamada add que reciba dos parámetros de tipo numérico
(number) y regrese como resultado la suma de los dos números.

add(a: number, b: number): number

8

None

None

None

None

None

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

 Comandos de Git y GitHub
Actualizacón del repositorio local

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

git add archivo.ext

Un git add por cada archivo que se actualizó

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

9

None

None

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

🥷 Ejercicio 02: Sintaxis básica de Typescript
Los temas que se estudian al realizar este reto son:

1.​ Operadores aritméticos y de asignación: Aprenderás a utilizar los operadores
aritméticos, como la suma, resta, multiplicación y división, para realizar
operaciones matemáticas en TypeScript. Además, explorarás los operadores
de asignación, como el operador de asignación simple y los operadores
compuestos, para asignar valores a variables de forma eficiente.

2.​ Identificadores: Comprenderás qué son los identificadores en TypeScript y
cómo utilizarlos para dar nombres significativos a variables, funciones y otros
elementos en tu código. Aprenderás las convenciones y buenas prácticas
para nombrar identificadores de manera clara y legible.

10

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

3.​ Distinción entre mayúsculas y minúsculas: Entenderás la importancia de la
distinción entre mayúsculas y minúsculas en TypeScript y cómo afecta la
forma en que se interpretan los identificadores y las palabras clave.
Aprenderás a seguir las reglas de distinción de casos y evitar errores
comunes relacionados con la sensibilidad de mayúsculas y minúsculas.

4.​ Sentencias: Aprenderás qué son las sentencias en TypeScript y cómo
utilizarlas para construir la lógica de tus programas. Explorarás diferentes
tipos de sentencias, como sentencias condicionales (if-else), bucles (for,
while) y sentencias de control de flujo (break, continue), para controlar el flujo
de ejecución de tu código.

5.​ Comentarios: Aprenderás a utilizar comentarios en TypeScript para
documentar tu código y hacerlo más comprensible para ti y otros
desarrolladores. Conocerás los diferentes tipos de comentarios, como los
comentarios de una línea y los comentarios de múltiples líneas, y aprenderás
cómo y cuándo utilizarlos adecuadamente.

6.​ Punto y coma: Comprenderás la importancia del punto y coma en TypeScript
como separador de instrucciones y aprenderás a utilizarlo correctamente.
Explorarás las convenciones y buenas prácticas relacionadas con el uso de
punto y coma en diferentes situaciones, como al finalizar una instrucción o en
la declaración de variables.

7.​ Interpolación: Aprenderás a utilizar la interpolación de cadenas de texto en
TypeScript para combinar valores de variables con texto de una manera más
concisa y legible. Conocerás la sintaxis y las mejores prácticas para realizar
la interpolación de cadenas y crear mensajes dinámicos en tus programas.

🎯 Objetivo de aprendizaje

1.​ Comprender la estructura básica de un programa escrito en TypeScript.
2.​ Familiarizarse con la sintaxis de TypeScript, incluyendo la declaración de

variables, tipos de datos y funciones.
3.​ Practicar la creación de funciones con parámetros y valores de retorno.
4.​ Aprender a utilizar la consola para ejecutar programas y mostrar resultados.
5.​ Demostrar la capacidad para trabajar con código fuente y utilizar un

repositorio para almacenar y entregar el código.
6.​ Adquirir habilidades de resolución de problemas y lógica al desarrollar

soluciones para los requerimientos funcionales.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.

11

3.​ Las funciones deben tener el nombre que se indica y el número y tipo de
parámetros que se especifican en la sección requerimientos funcionales.

4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el
correcto funcionamiento de las funciones.

5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

Requerimientos funcionales

En estos requerimientos funcionales se especifican las acciones que deben realizar
las funciones y los tipos de datos que deben recibir y retornar. Las firmas de las
funciones indican la sintaxis correcta para definir las funciones, mostrando los
nombres y tipos de los parámetros, así como el tipo de dato que retorna cada
función.

1️⃣ sum
Escribir una función que sume dos números.

sum(numberA: number, numberB): number;

2️⃣ subtract
Escribir una función que reste dos números.

 subtract(numberA: number, numberB): number

3️⃣ multiply
Escribir una función que multiplique dos números.

 multiply(numberA: number, numberB): number

4️⃣ divide
Escribir una función que divida dos números.

divide(numberA: number, numberB): number

12

None

None

None

None

5️⃣ remainder
Escribir una función que obtenga el residuo de una división entera entre dos
números.

Firma de la función: remainder(numberA: number, numberB): number

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

 Comandos de Git y GitHub
Actualizacón del repositorio local

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

13

None

None

None

git add archivo.ext

Un git add por cada archivo que se actualizó

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

14

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

🥷 Ejercicio 03: Primeras líneas con Typescript
Los temas que se estudian al realizar este reto son:

1.​ Operadores aritméticos y de asignación: Aprenderás a utilizar los operadores
aritméticos, como la suma, resta, multiplicación y división, para realizar
operaciones matemáticas en TypeScript. Además, explorarás los operadores
de asignación, como el operador de asignación simple y los operadores
compuestos, para asignar valores a variables de forma eficiente.

2.​ Identificadores: Comprenderás qué son los identificadores en TypeScript y
cómo utilizarlos para dar nombres significativos a variables, funciones y otros
elementos en tu código. Aprenderás las convenciones y buenas prácticas
para nombrar identificadores de manera clara y legible.

3.​ Distinción entre mayúsculas y minúsculas: Entenderás la importancia de la
distinción entre mayúsculas y minúsculas en TypeScript y cómo afecta la
forma en que se interpretan los identificadores y las palabras clave.
Aprenderás a seguir las reglas de distinción de casos y evitar errores
comunes relacionados con la sensibilidad de mayúsculas y minúsculas.

4.​ Sentencias: Aprenderás qué son las sentencias en TypeScript y cómo
utilizarlas para construir la lógica de tus programas. Explorarás diferentes
tipos de sentencias, como sentencias condicionales (if-else), bucles (for,
while) y sentencias de control de flujo (break, continue), para controlar el flujo
de ejecución de tu código.

5.​ Comentarios: Aprenderás a utilizar comentarios en TypeScript para
documentar tu código y hacerlo más comprensible para ti y otros
desarrolladores. Conocerás los diferentes tipos de comentarios, como los
comentarios de una línea y los comentarios de múltiples líneas, y aprenderás
cómo y cuándo utilizarlos adecuadamente.

6.​ Punto y coma: Comprenderás la importancia del punto y coma en TypeScript
como separador de instrucciones y aprenderás a utilizarlo correctamente.
Explorarás las convenciones y buenas prácticas relacionadas con el uso de
punto y coma en diferentes situaciones, como al finalizar una instrucción o en
la declaración de variables.

7.​ Interpolación: Aprenderás a utilizar la interpolación de cadenas de texto en
TypeScript para combinar valores de variables con texto de una manera más
concisa y legible. Conocerás la sintaxis y las mejores prácticas para realizar
la interpolación de cadenas y crear mensajes dinámicos en tus programas.

🎯 Objetivo de aprendizaje

1.​ Comprender la estructura básica de un programa escrito en TypeScript.
2.​ Familiarizarse con la sintaxis de TypeScript, incluyendo la declaración de

variables, tipos de datos y funciones.

15

3.​ Practicar la creación de funciones con parámetros y valores de retorno.
4.​ Aprender a utilizar la consola para ejecutar programas y mostrar resultados.
5.​ Demostrar la capacidad para trabajar con código fuente y utilizar un

repositorio para almacenar y entregar el código.
6.​ Adquirir habilidades de resolución de problemas y lógica al desarrollar

soluciones para los requerimientos funcionales.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

Requerimientos funcionales

En estos requerimientos funcionales se especifican las acciones que deben realizar
las funciones y los tipos de datos que deben recibir y retornar. Las firmas de las
funciones indican la sintaxis correcta para definir las funciones, mostrando los
nombres y tipos de los parámetros, así como el tipo de dato que retorna cada
función.

1️⃣ getDollars
Escribe una función llamada getDollars que tome un valor en pesos mexicanos
como parámetro y lo convierta a dólares estadounidenses. La función debe
considerar un tipo de cambio dado como un segundo parámetro. Devuelve el valor
convertido a dólares.

Parámetros:

●​ pesos: Un número que representa la cantidad en pesos mexicanos.

16

●​ tipoCambio: Un número que representa el tipo de cambio de pesos a dólares.

Resultado:

●​ Un número que representa la cantidad convertida en dólares.

getDollars(pesos: number, tipoCambio: number): number

2️⃣ getAreaCircle
Escribe una función llamada getAreaCircle que calcule el área de un círculo. La
función debe tomar como parámetro el radio del círculo y devolver el área. Utiliza el
valor de π (pi) para realizar el cálculo.

Parámetros:

●​ radio: Un número que representa el radio del círculo.

Resultado:

●​ Un número que representa el área del círculo.

getAreaCircle(radio: number): number

3️⃣ getFahrenheit
Escribe una función llamada getFahrenheit que convierta una temperatura dada en
grados Celsius a grados Fahrenheit. La función debe tomar como parámetro la
temperatura en grados Celsius y devolver el valor equivalente en grados Fahrenheit.

Parámetros:

●​ gradosCelsius: Un número que representa la temperatura en grados Celsius.

Resultado:

●​ Un número que representa la temperatura convertida en grados Fahrenheit.

getFahrenheit(gradosCelsius: number): number

4️⃣ getAreaTrapezoid
Escribe una función llamada getAreaTrapezoid que calcule el área de un trapecio. La
función debe tomar como parámetros las longitudes de las dos bases y la altura del
trapecio. Devuelve el área calculada.

Parámetros:

17

None

None

None

None

●​ baseMayor: Un número que representa la longitud de la base mayor del
trapecio.

●​ baseMenor: Un número que representa la longitud de la base menor del
trapecio.

●​ altura: Un número que representa la altura del trapecio.

Resultado:

●​ Un número que representa el área del trapecio.

getAreaTrapezoid(baseMayor: number, baseMenor: number, altura: number): number

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

 Comandos de Git y GitHub
Actualizacón del repositorio local

18

None

None

None

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

git add archivo.ext

Un git add por cada archivo que se actualizó

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

19

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

🥷 Ejercicio 04: Introducción a funciones
Los temas que se estudian al realizar este reto son:

1.​ Sintaxis básica de una función. Aprenderás a definir funciones en TypeScript,
entendiendo la estructura básica que incluye el nombre de la función, los
parámetros, y el cuerpo de la función donde se ejecuta el código.

2.​ Parámetros y valores de retorno. Descubrirás cómo pasar datos a las
funciones mediante parámetros y cómo obtener un resultado mediante
valores de retorno, comprendiendo la importancia de los tipos en ambos
casos.

🎯 Objetivos de aprendizaje

1.​ Comprender la sintaxis básica de una función en TypeScript, incluyendo la
declaración de funciones, el nombre de la función, los parámetros y el cuerpo
de la función.

2.​ Ser capaz de declarar y definir una función simple en TypeScript, utilizando la
palabra clave "function", y asignarle un nombre descriptivo.

3.​ Aprender a declarar y utilizar parámetros en una función, comprendiendo
cómo se definen y cómo se accede a sus valores dentro del cuerpo de la
función.

4.​ Entender la importancia de los tipos de datos en los parámetros de una
función y cómo TypeScript permite especificar los tipos de datos de los
parámetros para mejorar la seguridad y la legibilidad del código.

5.​ Ser capaz de escribir una función que devuelve un valor específico y
entender cómo se especifica el tipo de valor de retorno en la declaración de
la función.

6.​ Practicar la creación de funciones simples que aceptan parámetros, realizan
operaciones en ellos y devuelven un resultado coherente.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

20

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

👨‍💻 Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones específicas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parámetros, así como el tipo de dato que
retorna cada función.

1️⃣ getAverage
Escribe una función que tome tres números como parámetros y calcule el promedio
de esos tres valores. Asegúrate de que la función retorne el resultado como un
número.

getAverage(number1: number, number2: number, number3: number): number

2️⃣ getSquarePerimeter
Escribe una función que calcule el perímetro de un cuadrado. La función debe
recibir como parámetro la longitud de un lado del cuadrado y devolver el valor del
perímetro.

getSquarePerimeter(sideLength: number): number

3️⃣ getMilesToKilometers
Diseña una función que convierta una distancia de millas a kilómetros. La función
debe recibir la distancia en millas como argumento y devolver el equivalente en
kilómetros, utilizando la conversión estándar donde 1 milla es igual a 1.60934
kilómetros.

getMilesToKilometers(miles: number): number

4️⃣ getDoubleNumber
Implementa una función que calcule y devuelva el doble de un número. La función
debe aceptar un número como parámetro y retornar el resultado de multiplicar ese
número por dos.

getDoubleNumber(number: number): number

21

None

None

None

None

5️⃣ getTriangleArea
Crea una función que calcule el área de un triángulo. La función debe aceptar la
base y la altura del triángulo como parámetros, y devolver el área.

getTriangleArea(base: number, height: number): number

6️⃣ getSphereVolume
debe recibir el radio de la esfera como parámetro y devolver el volumen, utilizando
la fórmula 4/3 x Pi x radio^3.

getSphereVolume(radius: number): number

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

 Comandos de Git y GitHub
Actualización del repositorio local

22

None

None

None

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

git add archivo.ext

Un git add por cada archivo que se actualizó

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

23

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

🥷 Ejercicio 05: Programación de funciones
Los temas que se estudian al realizar este reto son:

1.​ Sintaxis básica de una función. Aprenderás a definir funciones en TypeScript,
entendiendo la estructura básica que incluye el nombre de la función, los
parámetros, y el cuerpo de la función donde se ejecuta el código.

2.​ Parámetros y valores de retorno. Descubrirás cómo pasar datos a las
funciones mediante parámetros y cómo obtener un resultado mediante
valores de retorno, comprendiendo la importancia de los tipos en ambos
casos.

🎯 Objetivos de aprendizaje

1.​ Comprender la sintaxis básica de una función en TypeScript, incluyendo la
declaración de funciones, el nombre de la función, los parámetros y el cuerpo
de la función.

2.​ Ser capaz de declarar y definir una función simple en TypeScript, utilizando la
palabra clave "function", y asignarle un nombre descriptivo.

3.​ Aprender a declarar y utilizar parámetros en una función, comprendiendo
cómo se definen y cómo se accede a sus valores dentro del cuerpo de la
función.

4.​ Entender la importancia de los tipos de datos en los parámetros de una
función y cómo TypeScript permite especificar los tipos de datos de los
parámetros para mejorar la seguridad y la legibilidad del código.

5.​ Ser capaz de escribir una función que devuelve un valor específico y
entender cómo se especifica el tipo de valor de retorno en la declaración de
la función.

6.​ Practicar la creación de funciones simples que aceptan parámetros, realizan
operaciones en ellos y devuelven un resultado coherente.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

24

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

👨‍💻 Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones específicas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parámetros, así como el tipo de dato que
retorna cada función.

1️⃣ getHypotenuse
Escribe una función que calcule la longitud de la hipotenusa de un triángulo
rectángulo. La función debe recibir las longitudes de los dos catetos como
parámetros y devolver la longitud de la hipotenusa.

getHypotenuse(side1: number, side2: number): number

2️⃣ geSeconds
Escribe una función que convierta horas a segundos. La función debe recibir la
cantidad de horas como parámetro y devolver la cantidad de segundos equivalente,
donde 1 hora es igual a 3600 segundos.

getSeconds(hours: number): number

3️⃣ getMiles
Implementa una función que convierta distancias en kilómetros a millas. La función
debe recibir la distancia en kilómetros como argumento y devolver la distancia
equivalente en millas, donde 1 kilómetro es igual a 0.621371 millas.

getMiles(kilometers: number): number

4️⃣ getLitres
Crea una función que convierta pies cúbicos a litros. La función debe recibir el
volumen en pies cúbicos como argumento y devolver el volumen equivalente en
litros, donde 1 pie cúbico es igual a 28.3168 litros.

getLitres(cubicFeet: number): number

25

None

None

None

None

5️⃣ getCylinderSurfaceArea
Crea una función que calcule el área de la superficie lateral de un cilindro. La
función debe recibir el radio y la altura del cilindro como parámetros y devolver el
área de la superficie lateral, donde el área de la superficie lateral de un cilindro se
calcula como 2 x π x radio x altura.

getCylinderSurfaceArea(radius: number, height: number): number

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

 Comandos de Git y GitHub
Actualizacón del repositorio local

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

26

None

None

None

git add archivo.ext

Un git add por cada archivo que se actualizó

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

🥷 Ejercicio 06: Introducción a Sentencias
condicionales
Los temas que se estudian al realizar este reto son:

27

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

●​ Sintaxis de las estructuras condicionales en TypeScript.
●​ El operador ternario como una forma concisa de expresar condiciones.
●​ La sentencia if y su uso en la toma de decisiones.
●​ La sentencia if...else para manejar casos alternativos.
●​ La sentencia if...else if para evaluar múltiples condiciones en orden.
●​ Cómo controlar el flujo de un programa con condicionales.

🎯 Objetivos de aprendizaje

●​ Comprender la sintaxis de las estructuras condicionales en TypeScript y su
importancia en la programación.

●​ Utilizar el operador ternario de manera efectiva para expresar condiciones de
forma concisa en sus programas.

●​ Dominar el uso de la sentencia if para tomar decisiones basadas en
condiciones específicas.

●​ Aplicar la sentencia if...else para manejar casos alternativos y ejecutar
diferentes bloques de código según la evaluación de una condición.

●​ Utilizar la sentencia if...else if para evaluar múltiples condiciones en orden y
ejecutar el bloque de código correspondiente al primer caso verdadero.

●​ Aprender a controlar el flujo de un programa mediante la implementación de
estructuras condicionales.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

👨‍💻 Requerimientos funcionales

28

Los requerimientos funcionales se refieren a las acciones específicas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parámetros, así como el tipo de dato que
retorna cada función.

1️⃣ isAdult
Escribir una función que reciba como parámetro un número con el valor de la edad
de una persona y regrese true si es mayor de edad o false si no es.

isAdult(age: number): boolean

2️⃣ toTitle
Escribir una función que reciba como parámetros un string con un mensaje y un
booleano para indicar si es un título con true o si no lo es con false. Si el valor del
booleano es true, regresará el mismo mensaje pero con todas las letras en
mayúsculas.

toTitle(message: string, isTitle: boolean): string

3️⃣ sayHello*
Escribir una función que reciba como parámetro un string con el nombre de una
persona y un booleano para indicar si esta persona es un administrador o no. Si la
persona es un administrador, la función regresará un saludo y la clave de acceso del
sistema, que es "1234", por ejemplo "Hola, Juan. Tu clave es 1234". Si la persona
no es un administrador, la función regresará un saludo simple, por ejemplo "Hola,
Juan".

sayHello(name: string, isAdmin: boolean): string

4️⃣ totalCost
Escribir una función que reciba como parámetros el costo del producto y la cantidad
de productos comprados. La función deberá regresar el costo total. Si el costo total
excede de $1000, deberá aplicar un descuento del 15%

totalCost(productCost: number, quantity: number): number

5️⃣ getDiscount*
Escribir una función que recibe como parámetro el total de la venta y regrese el
porcentaje de descuento que le corresponde. Si la venta es mayor que $1000 el
descuento es del 25% de lo contrario el descuento es del 10%

getDiscount(total: number): number

29

None

6️⃣ getCinemaCost
Escribir una función que reciba como parámetros la fecha de la función de cine y el
número de boletos a comprar. La función deberá calcular el costo total, tomando en
cuenta que el costo de cada boleto es de $100, que los jueves hay promoción de
3x2 y que el resto de los días se aplica un 10% de descuento.

getCinemaCost(date: Date, tickets: number): number

7️⃣ grade
Escribir una función que reciba como parámetro un número entero con una
calificación y regrese una cadena de texto según la siguiente escala:

●​ Si la calificación es mayor a 90, la función debe devolver "Champion!".
●​ Si la calificación es mayor a 80, la función debe devolver "Good".
●​ Si la calificación es mayor a 60, la función debe devolver "Not bad".
●​ Para cualquier otro caso, la función debe devolver "Try again".

grade(score: number): string

8️⃣ hasAccess
Escribe una función que determine si una persona tiene acceso según el color de su
camisa y el color de sus zapatos. La función debe recibir dos cadenas de texto
como parámetros, que representan el color de la camisa y el color de los zapatos. Si
alguno de los dos es de color blanco, la función debe devolver true; en caso
contrario, debe devolver false.

hasAccess(shirtColor: string, shoesColor: string): boolean

9️⃣ isStudent
Escribir una función que reciba como parámetros si tiene o no identificación de
estudiante y la edad. Para ser estudiante es necesario tener identificación y ser
mayor de 18. La función debe regresar true si es estudiante o false si no lo es.

isStudent(hasID: boolean, age: number): boolean

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

30

None

None

None

None

None

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

 Comandos de Git y GitHub
Actualizacón del repositorio local

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

git add archivo.ext

Un git add por cada archivo que se actualizó

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

31

None

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

🥷 Ejercicio 07 Sentencias condicionales
Los temas que se estudian al realizar este reto son:

●​ Sintaxis de las estructuras condicionales en TypeScript.
●​ El operador ternario como una forma concisa de expresar condiciones.
●​ La sentencia if y su uso en la toma de decisiones.
●​ La sentencia if...else para manejar casos alternativos.
●​ La sentencia if...else if para evaluar múltiples condiciones en orden.
●​ Cómo controlar el flujo de un programa con condicionales.

🎯 Objetivos de aprendizaje

●​ Comprender la sintaxis de las estructuras condicionales en TypeScript y su
importancia en la programación.

●​ Utilizar el operador ternario de manera efectiva para expresar condiciones de
forma concisa en sus programas.

●​ Dominar el uso de la sentencia if para tomar decisiones basadas en
condiciones específicas.

●​ Aplicar la sentencia if...else para manejar casos alternativos y ejecutar
diferentes bloques de código según la evaluación de una condición.

32

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

●​ Utilizar la sentencia if...else if para evaluar múltiples condiciones en orden y
ejecutar el bloque de código correspondiente al primer caso verdadero.

●​ Aprender a controlar el flujo de un programa mediante la implementación de
estructuras condicionales.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

👨‍💻 Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones específicas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parámetros, así como el tipo de dato que
retorna cada función.

1️⃣ isPair
Esta función debe recibir un número entero como parámetro y devolver true si el
número es par o false si es impar. Debes utilizar el operador ternario para
implementar la función.

isPair(number: number): boolean

33

2️⃣ startsWithVowel
Crea una función que determine si una palabra comienza con una vocal. La función
debe recibir una cadena de texto como parámetro y devolver true si la palabra
comienza con una vocal o false si no comienza con una vocal.

startsWithVowel(word: string): boolean

3️⃣ getLongestWord
Escribe una función que reciba como parámetros dos palabras y devuelva la palabra
más larga. Si ambas palabras tienen la misma longitud, la función debe devolver la
primera palabra.

getLongestWord(word1: string, word2: string): string

4️⃣ getSeason
Crea una función que determine la estación del año en función del mes. La función
debe recibir una fecha en formato Date como parámetro y devolver una cadena de
texto con el nombre de la estación correspondiente:

●​ Enero, febrero y marzo: "Invierno"
●​ Abril, mayo y junio: "Primavera"
●​ Julio, agosto y septiembre: "Verano"
●​ Octubre, noviembre y diciembre: "Otoño"

getSeason(date: Date): string

5️⃣ calculateShippingCost
Crea una función que calcule el costo de envío de un paquete en función de su
peso. Si el peso es menor o igual a 5 kg, el costo es $10; de lo contrario, el costo es
de $15.

calculateShippingCost(weight: number): number

6️⃣ convertGradeToLetter
Crea una función que convierta una calificación numérica en una letra de nota. La
función debe recibir un número entero como parámetro y devolver la letra de nota
correspondiente según la siguiente escala:

●​ 90 a 100: "A"
●​ 80 a 89: "B"
●​ 70 a 79: "C"
●​ 0 a 70: "F"

34

●​ Si la calificación no está en el rango de 0 a 100, la función debe devolver
"Nota inválida".

convertGradeToLetter(grade: number): string

7️⃣ classifyNumber
Crea una función que clasifique un número en función de su signo. La función debe
recibir un número entero como parámetro y devolver una cadena de texto con la
clasificación del número:

●​ Si el número es mayor que cero, la función debe devolver "Positivo".
●​ Si el número es menor que cero, la función debe devolver "Negativo".
●​ Si el número es igual a cero, la función debe devolver "Cero".

classifyNumber(number: number): string

8️⃣ classifyTriangle
Crea una función que clasifique un triángulo en función de la longitud de sus lados.
La función debe recibir tres números enteros como parámetros que representan las
longitudes de los lados del triángulo y devolver una cadena de texto con la
clasificación del triángulo:

●​ Si todos los lados son iguales, la función debe devolver "Equilátero".
●​ Si exactamente dos lados son iguales, la función debe devolver "Isósceles".
●​ Si todos los lados son diferentes, la función debe devolver "Escaleno".

classifyTriangle(side1: number, side2: number, side3: number): string

9️⃣ classifyAngle
Crea una función que clasifique un ángulo en función de su medida. La función debe
recibir un número entero como parámetro que representa la medida del ángulo en
grados y devolver una cadena de texto con la clasificación del ángulo:

●​ Si el ángulo es agudo (menos de 90 grados), la función debe devolver
"Ángulo Agudo".

●​ Si el ángulo es recto (exactamente 90 grados), la función debe devolver
"Ángulo Recto".

●​ Si el ángulo es obtuso (entre 90 y 180 grados), la función debe devolver
"Ángulo Obtuso".

●​ Si el ángulo no está en ninguno de los rangos anteriores, 0 o menor que cero
y igual o mayor a 180, la función debe devolver "Ángulo Inválido".

classifyAngle(angle: number): string

35

None

None

None

None

10 calculateDiscount
Crea una función que calcule el descuento aplicado a una compra en función del
monto total. La función debe recibir un número entero como parámetro que
representa el monto total de la compra y devolver el monto con el descuento
aplicado según las siguientes condiciones:

●​ Si el monto es mayor o igual a $100, se aplica un 10% de descuento.
●​ Si el monto es mayor o igual a $50 pero menor a $100, se aplica un 5% de

descuento.
●​ Si el monto es menor a $50, no se aplica descuento.

calculateDiscount(total: number): number

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

36

None

None

None

 Comandos de Git y GitHub
Actualizacón del repositorio local

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

git add archivo.ext

Un git add por cada archivo que se actualizó

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground

37

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play

●​ Awesome TypeScript

🥷 Ejercicio 08: Sentencias condicionales

Los temas que se estudian al realizar este reto son:

●​ Sintaxis de las estructuras condicionales en TypeScript.
●​ El operador ternario como una forma concisa de expresar condiciones.
●​ La sentencia if y su uso en la toma de decisiones.
●​ La sentencia if...else para manejar casos alternativos.
●​ La sentencia if...else if para evaluar múltiples condiciones en orden.
●​ Cómo controlar el flujo de un programa con condicionales.

🎯 Objetivos de aprendizaje

●​ Comprender la sintaxis de las estructuras condicionales en TypeScript y su
importancia en la programación.

●​ Utilizar el operador ternario de manera efectiva para expresar condiciones de
forma concisa en sus programas.

●​ Dominar el uso de la sentencia if para tomar decisiones basadas en
condiciones específicas.

●​ Aplicar la sentencia if...else para manejar casos alternativos y ejecutar
diferentes bloques de código según la evaluación de una condición.

●​ Utilizar la sentencia if...else if para evaluar múltiples condiciones en orden y
ejecutar el bloque de código correspondiente al primer caso verdadero.

●​ Aprender a controlar el flujo de un programa mediante la implementación de
estructuras condicionales.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

38

https://github.com/dzharii/awesome-typescript

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

👨‍💻 Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones específicas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parámetros, así como el tipo de dato que
retorna cada función.

01 getCost

Escribe una función que determine el costo total de una compra de hamburgesas.
La función debe recibir como parámetros la fecha de la compra y el número de
hamburgesas compradas. El costo de cada hamburgesa es de $50 pesos. Para
determninar el costo total se debe considerar lo siguiente:

1.​ En enero todos los lunes se aplica un descuento del 5%.
2.​ En agosto si compra más de 5 hamburgesas se aplica un descuento del 10%
3.​ En noviembre y diciembre, los jueves si compra más de 10 hamburgesas se

aplica una promoción de 4x3.
4.​ En el resto de los meses si compra más de 3 hamburgesas se aplica un

descuento del 5%.

getCost(date: Date, quantity: number): number

02 getSmallest
Escribe una función que reciba tres números enteros diferentes y regrese como
resultado el menor de los tres números.

getSmallest(number1: number, number2: number, number3: number): number

03 isEligibleForDiscount
Escribe una función que determine si un cliente es elegible para un descuento en
una tienda. La función debe recibir como parámetros el total de la compra y si el
cliente es miembro de la tienda. Un cliente obtiene un descuento del 20% si el total
de la compra es mayor a $1000 o si es miembro de la tienda. Si el total de la compra
es menor o igual a $1000 y no es miembro, no tiene descuento.

39

isEligibleForDiscount(total: number, isMember: boolean): boolean

04 isLeapYear

Escribe una función que determine si un año es bisiesto. Un año es bisiesto si es
divisible entre 4 y no es divisible entre 100, a menos que también sea divisible entre
400.

isLeapYear(year: number): boolean

05 isValidPassword
Escribe una función que determine si una contraseña es válida. Una contraseña es
válida si tiene al menos 8 caracteres y contiene al menos una vocal.

isValidPassword(password: string): boolean

06 getDiscountAmount
Escribe una función que calcule el descuento aplicado a una compra. La función
debe recibir como parámetros el total de la compra y un booleano que indique si el
cliente es nuevo. Los clientes nuevos reciben un descuento del 15% o si el total de
la compra es mayor a $2000, el descuento es del 20%. Si ninguna de estas
condiciones se cumple, no hay descuento.

getDiscountAmount(total: number, isNewCustomer: boolean): number

📚 Recursos
Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

🥷 Ejercicio 09: Introducción a sentencias
repetitivas
Los temas que se estudian al realizar este reto son:

40

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

●​ Sintaxis de las estructuras repetitivas en TypeScript.
●​ La sentencia for y su uso.
●​ La sentencia while y su uso.
●​ La sentencia do...while y su uso.

🎯 Objetivos de aprendizaje

1.​ Comprender la sintaxis de las estructuras repetitivas en TypeScript y su
importancia en la programación.

2.​ Aprender a utilizar la sentencia for para crear ciclos controlados por una
variable de contador, permitiendo la ejecución repetida de bloques de código.

3.​ Dominar el uso de la sentencia while para ejecutar ciclos basados en una
condición booleana, con la capacidad de repetir el bloque mientras la
condición sea verdadera.

4.​ Utilizar la sentencia do...while en TypeScript para crear ciclos que garantizan
que el bloque de código se ejecute al menos una vez antes de verificar la
condición.

5.​ Aplicar de manera efectiva las estructuras repetitivas para automatizar tareas
y procesar conjuntos de datos en programas TypeScript.

6.​ Entender cuándo y cómo usar cada tipo de estructura repetitiva según los
requisitos específicos de un programa.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

📥 Entregables

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

👨‍💻 Requerimientos funcionales

41

Los requerimientos funcionales se refieren a las acciones específicas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parámetros, así como el tipo de dato que
retorna cada función.

01 printNumbers
Utilizando el ciclo for, escribir una función que imprima los números del 1 al 10.

printNumbers(): void

printOddNumbers

Utilizando el ciclo for, escribir una función que imprima los números impares que
hay entre una número a y un número b.

printOddNumbers(a: number, b: number): void

02 invert
Utilizando el ciclo for, escribir una función que reciba dos números, start y end, y
regrese una cadena con los números desde end hasta start en orden descendente,
concatenados en una sola cadena. Por ejemplo, si start es 1 y end es 5, la función
debería regresar "54321".

invert(start: number, end: number): string

03 countVowels
Utilizando el ciclo for, escribir una función que regrese un string que regrese
cuantas vocales tiene. Pueden usar la función charAt()

countVowels(word: string): string

04 countToTen
Utilizando el ciclo while, escribir una función que imprima los números del 1 al 10.

countToTen(): void

05 getSumFrom100
Utilizando el ciclo while, escribir una función que regrese la suma de los números
que hay entre 100 y n, donde n es siempre un número menor a 100. Por ejemplo si
n es 98, la función debería regresar 100 + 99 + 98 = 297.

42

None

getSumFrom100(n: number): number

06 countLetter
Utilizando el ciclo while, escribir una función que reciba como parámetros un string y
una letra. La función deberá regresar cuántas veces está presente esa letra dentro
del string. Por ejemplo, si el string es "hola mundo" y la letra es "o", la función
debería regresar 2.

countLetter(text: string, letter: string): number

07 printToFive
Utilizando el ciclo do...while, escribir una función que imprima los números del 1 al
5.

printToFive(): void

08 printFromAToB
Utilizando el ciclo do...while, escribir una función que reciba dos números, a y b, y
regrese una cadena con los números desde a hasta b en orden ascendente,
concatenados en una sola cadena. Por ejemplo, si a es 3 y b es 7, la función debería
regresar "34567".

printFromAToB(a: number, b: number): string

09 getSum
Utilizando el ciclo do...while, escribir una función que regrese la sumatoria de los
números que hay entre 1 y n. Por ejemplo, si n = 4 debe regresar 10. Porque
1+2+3+4 = 10

getSum(n: number): number

10 printMultiply
Utilizando el ciclo do...while, escribir una función que imprima la tabla de multiplicar
de un número desde 1 hasta 12 como se muestra abajo:

Por ejemplo, si número = 5 debe imprimir:

5 x 1 = 5
5 x 2 = 10

43

None

None

None

None

5 x 3 = 15
...
5 x 12 = 60

printMultiply(number: number): void

11 fibonacci
Utilizando el ciclo do...while, escribir una función que regrese un string con los
números de la serie de Fibonacci hasta n. Por ejemplo, si n es 5, la función debería
regresar "0, 1, 1, 2, 3".

fibonacci(n: number): string

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

44

None

None

None

 Comandos de Git y GitHub
Actualizacón del repositorio local

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

git add archivo.ext

Un git add por cada archivo que se actualizó

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

git commit -m "mensaje"

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

45

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

🥷 Ejercicio 10: Sentencias repetitivas
Los temas que se estudian al realizar este reto son:

●​ Sintaxis de las estructuras repetitivas en TypeScript.
●​ La sentencia for y su uso.
●​ La sentencia while y su uso.
●​ La sentencia do...while y su uso.

🎯 Objetivos de aprendizaje

●​ Comprender la sintaxis de las estructuras repetitivas en TypeScript y su
importancia en la programación.

●​ Aprender a utilizar la sentencia for para crear ciclos controlados por una
variable de contador, permitiendo la ejecución repetida de bloques de código.

●​ Dominar el uso de la sentencia while para ejecutar ciclos basados en una
condición booleana, con la capacidad de repetir el bloque mientras la
condición sea verdadera.

●​ Utilizar la sentencia do...while en TypeScript para crear ciclos que garantizan
que el bloque de código se ejecute al menos una vez antes de verificar la
condición.

●​ Aplicar de manera efectiva las estructuras repetitivas para automatizar tareas
y procesar conjuntos de datos en programas TypeScript.

●​ Entender cuándo y cómo usar cada tipo de estructura repetitiva según los
requisitos específicos de un programa.

📋 Instrucciones

1.​ Utilizando typescript codifica las funciones que se indican en la sección
requerimientos funcionales de este documento.

2.​ Las funciones deben ser codificadas en un archivo llamado app.ts.
3.​ Las funciones deben tener el nombre que se indica y el número y tipo de

parámetros que se especifican en la sección requerimientos funcionales.
4.​ En el archivo demo.ts se deben incluir ejemplos de código que muestren el

correcto funcionamiento de las funciones.
5.​ Las funciones deben ser probadas y ejecutadas utilizando la consola.
6.​ El código fuente final debe ser almacenado en este repositorio de GitHub.

📥 Entregables

46

●​ Código fuente de la solución a los requerimientos planteados en la sección
requerimientos funcionales en este repositorio

👨‍💻 Requerimientos funcionales

Los requerimientos funcionales se refieren a las acciones específicas que las
funciones deben realizar y los tipos de datos que deben recibir y retornar. Las firmas
de las funciones muestran la sintaxis correcta para definir las funciones,
especificando los nombres y tipos de los parámetros, así como el tipo de dato que
retorna cada función.

1️⃣ getSum
Escribe una función que calcule la suma de los números desde el número A hasta el
número B utilizando un ciclo for. La función debe regresar la suma total. Por
ejemplo, si numberA = 1 y numberB = 5, la función debe regresar 15 (1 + 2 + 3 + 4 + 5).

getSum(numberA: number, numberB: number): number

2️⃣ getSequence
Escribe una función que genere un string con una secuencia de números
descendente desde el número A hasta el número B utilizando un ciclo for. Si el
número A es menor que el número B, la función debe regresar el string "-1". Por
ejemplo, si numberA = 20 y numberB = 15, la función debe regresar el string "20 19 18
17 16 15". Pero si numberA = 15 y numberB = 20, la función debe regresar "-1".

getSequence(numberA: number, numberB: number): string

3️⃣ getEvenSum
Escribe una función que calcule la suma de los números pares entre 1 y N utilizando
un ciclo while. La función debe regresar la suma total. Por ejemplo, si N = 10, la
función debe regresar 30 (2 + 4 + 6 + 8 + 10).

getEvenSum(N: number): number

4️⃣ count5and3
Escribe una función que cuente cuántos números múltiplos de 5 y 3 existen entre 1
y N utilizando un ciclo while. La función debe regresar la cantidad total. Por ejemplo,
si N = 30, la función debe regresar 2 (15, 30).

count5and3(n: number): number

47

5️⃣ calculatePower
Escribe una función que tome dos números enteros, base y exponent, y calcule la
potencia de base elevado a exponent utilizando un ciclo do..while. La función debe
regresar el resultado de la potencia. Por ejemplo, si base = 2 y exponent = 3, la
función debe regresar 8 (2 x 2 x 2).

calculatePower(base: number, exponent: number): number

6️⃣ countVowels
Escribe una función que reciba una cadena de texto y cuente cuántas vocales (a, e,
i, o, u) contiene utilizando un ciclo do..while. La función debe regresar la cantidad de
vocales encontradas en la cadena. Por ejemplo, si text = "hello", la función debe
regresar 2.

countVowels(text: string): number

7️⃣ countCharacters
Escribe una función que reciba una cadena de texto y cuente cuántos caracteres
contiene, ignorando los espacios, puntos y comas. Usa un ciclo para recorrer la
cadena y contar los caracteres. La función debe regresar el número total de
caracteres. No está permitido utilizar la función length de JavaScript.

countCharacters(text: string): number

8️⃣ sumDigits
Escribe una función que reciba un número entero y utilice un ciclo para sumar los
dígitos del número. Por ejemplo, si el número es 123, la función debe regresar 6
(porque 1 + 2 + 3 = 6).

sumDigits(number: number): number

9️⃣ reverseString
Escribe una función que reciba una cadena de texto y utilice un ciclo para invertir el
orden de los caracteres. La función debe regresar la cadena invertida. Por ejemplo,
si la cadena es "hola", debe regresar "aloh". No puedes utilizar el método reverse
de JavaScript.

reverseString(text: string): string

🔟 factorial
Escribe una función que reciba un número entero positivo y utilice un ciclo para
calcular el factorial de ese número. El factorial de un número es el producto de todos

48

None

None

None

None

None

los números enteros desde 1 hasta ese número. Por ejemplo, el factorial de 5 es 5 *
4 * 3 * 2 * 1 = 120.

factorial(n: number): number

🚀 Ejecución de programas
Para ejecutar un programa utilizar:

npx ts-node nombre-archivo

Por ejemplo:

npx ts-node demo

🚦 Ejecución de pruebas unitarias
Para ejecutar una prueba unitaria utilizar:

npx jest nombre-de-funcion

Por ejemplo:

npx jest add

 Comandos de Git y GitHub
Actualizacón del repositorio local

Cada vez que se terminó e actualizar uno o más archivo utilizar, pasar los cambios a
staging utilizando:

git add archivo.ext

Un git add por cada archivo que se actualizó

49

None

None

Una vez que se agregaron los archivo para la nueva versión, confirmar la nueva
versión utilizando:

git commit -m "mensaje"

Important

Si al hacer commit el linter detecta errores: 1. Corregir los errores, 2. Volver a hacer
git add por cada archivo corregido 3. Volver a hacer el commit. Repetir estos 3
pasos hasta que no se obtengan errores por el linter.

Actualización del repositorio remoto

Para enviar las actualizaciones al repositorio remoto utilizar:

git push origin

📚 Recursos

Aquí tienes una lista de recursos recomendados que puedes utilizar como referencia
y consulta:

●​ TypeScript
●​ TypeScript Deep Dive
●​ TypeScript in 5 minutes
●​ MDN JavaScript
●​ DevDocs
●​ TypeScript Playground
●​ Awesome TypeScript

50

https://www.typescriptlang.org/docs/
https://basarat.gitbook.io/typescript/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://devdocs.io/
https://www.typescriptlang.org/play
https://github.com/dzharii/awesome-typescript

	CONTENIDO
	
	Presentación
	
	
	🥷 Ejercicio 01 - Hola, mundo
	🎯 Objetivo de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ sayHelloWithName
	2️⃣ add
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 02: Sintaxis básica de Typescript
	🎯 Objetivo de aprendizaje
	📋 Instrucciones
	📥 Entregables
	Requerimientos funcionales
	1️⃣ sum
	2️⃣ subtract
	3️⃣ multiply
	4️⃣ divide
	5️⃣ remainder
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 03: Primeras líneas con Typescript
	🎯 Objetivo de aprendizaje
	📋 Instrucciones
	📥 Entregables
	Requerimientos funcionales
	1️⃣ getDollars
	2️⃣ getAreaCircle
	3️⃣ getFahrenheit
	4️⃣ getAreaTrapezoid
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 04: Introducción a funciones
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ getAverage
	2️⃣ getSquarePerimeter
	3️⃣ getMilesToKilometers
	4️⃣ getDoubleNumber
	5️⃣ getTriangleArea
	6️⃣ getSphereVolume
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 05: Programación de funciones
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ getHypotenuse
	2️⃣ geSeconds
	3️⃣ getMiles
	4️⃣ getLitres
	5️⃣ getCylinderSurfaceArea
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 06: Introducción a Sentencias condicionales
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ isAdult
	2️⃣ toTitle
	3️⃣ sayHello*
	4️⃣ totalCost
	5️⃣ getDiscount*
	6️⃣ getCinemaCost
	7️⃣ grade
	8️⃣ hasAccess
	9️⃣ isStudent
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 07 Sentencias condicionales
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ isPair
	2️⃣ startsWithVowel
	3️⃣ getLongestWord
	4️⃣ getSeason
	5️⃣ calculateShippingCost
	6️⃣ convertGradeToLetter
	7️⃣ classifyNumber
	8️⃣ classifyTriangle
	9️⃣ classifyAngle
	10 calculateDiscount
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub
	📚 Recursos

	🥷 Ejercicio 08: Sentencias condicionales
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	01 getCost
	02 getSmallest
	03 isEligibleForDiscount
	04 isLeapYear
	05 isValidPassword
	06 getDiscountAmount

	📚 Recursos

	🥷 Ejercicio 09: Introducción a sentencias repetitivas
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables

	👨‍💻 Requerimientos funcionales
	01 printNumbers
	printOddNumbers
	02 invert
	03 countVowels
	04 countToTen
	05 getSumFrom100
	06 countLetter
	07 printToFive
	08 printFromAToB
	09 getSum
	10 printMultiply
	11 fibonacci
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

	🥷 Ejercicio 10: Sentencias repetitivas
	🎯 Objetivos de aprendizaje
	📋 Instrucciones
	📥 Entregables
	👨‍💻 Requerimientos funcionales
	1️⃣ getSum
	2️⃣ getSequence
	3️⃣ getEvenSum
	4️⃣ count5and3
	5️⃣ calculatePower
	6️⃣ countVowels
	7️⃣ countCharacters
	8️⃣ sumDigits
	9️⃣ reverseString
	🔟 factorial
	🚀 Ejecución de programas
	🚦 Ejecución de pruebas unitarias
	:octocat: Comandos de Git y GitHub

	📚 Recursos

